
O ILL.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Itn

-DTIC
0 91, &%ELECTE

EB 419 U

THESIS

VIEWER
A USER INTERFACE FOR

FAILURE REGION ANALYSIS

by

Vicki Sue Abel
and

Medio Mond

December, 1990

Thesis Advisor: Timothy Shimeali

Approved for public release; distribution is unlimited.

91 2 12 060

UNCLASSIFIED
SECURITY CLASSFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DIOTIBUTIOWAVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING S'"DULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

" NAME OF EEtFORM ILIG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
omputer 9cience Dept. (if apiable) Naval Postgraduate School

Naval Postgraduate School 37
6c. ADDRESS (City, SaN, and ZIP Code) 7b. ADDRESS (Ciy, Stale, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sa. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if apkable)

8c. ADDRESS (City, Stae, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Secuity Classification)
VIEWER A USER INTERFACE FOR FAILURE REGION ANALYSIS(U)

U Monti

aster s°esis 13b.FRTIMECOVERED 14. DATE OF REPORT (Year. Month, Day) PAGE UNT
ster esisFROM03/90 To 12(90 1December 199027

16. SUPPLEMENTARY NOTATIOIhe views expressed in this thesis are those of th. author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Failure Regions User InterfacesI I+ Testing Tools

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Two issues gaining interest in the computer community are the development of software testing tools and the

increase of graphical user interfaces in all types of software. VIEWER is a program that provides support to a set
of tools that work in an integrated fashion to analyze Pascal programs to determine the failure regions associated
with identified faults in the program. It is a graphical user interface that facilitates the process of analyzing the
program. It provides automated coordination between the tools and as such maintains a certain level of
abstraction for the analyst. It allows for rapid and customized improvement in the automation of the analysis
process.

The thesis discusses the background involved in testing tools, user interfaces, and the combination of the two
into a useful tool. An implemented prototype is discussed and an example of failure region analysis performed
with the graphical user interface is included.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

Cm NAE ?F gfiEPNS L IN DIVDUA 2O (clude Area Code) 2 C _ E SYMBOL
mo y im Vl Re Co

DD FORM 1473,64 MAR 83 APR edibion may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other edtons are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited.

VIEWER

A User Interface for

Failure Region Analysis

by

Vicki Sue Abel

Lieutenant Commander, United States Navy

B.A., University of Dallas, 1979

and

Medio Monti

Captain, United States Marine Corps

B.S., Allegheny College, 1979

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1990

Authors: 9 ,4 4 C {

Medio Monti

Approved by:

Timothy Shimeall, Thesis Advisor

CDa -f jco Reader

Robert B. McGhee, Chairman

Department of Computer Science

ii

ABSTRACT

Two issues gaining interest in the computer community are the development of

software testing tools and the increase of graphical user interfaces in all types of

software. VIEWER is a program that provides support to a set of tools that work in an

integrated fashion to analyze Pascal programs to determine the failure regions associated

with identified faults in the program. It is a graphical user interface that facilitates the

process of analyzing the program. It provides automated coordination between the tools

and as such maintains a certain level of abstraction for the analyst. It allows for rapid

and customized improvement in the automation of the analysis process.

The thesis discusses the background involved in testing tools, user interfaces, and

the combination of the two into a useful tool. An implemented prototype is discussed

and an example of failure region analysis performed with the graphical user interface is

included.

"+ Aoousgum lo.

NTrs mRA&

DTIC TAB 0
rU, Un anm o u~kn 9"d 13Justificatlon

By
Distribution/

Availability Codes
l~ Avail and/ow

Dist Special

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

A. TOOL TAXONOMIES 2

B. TYPES OF TESTING 4

C. ENVIRONMENT OF TESTING TOOLS 9

D. INTERFACE DESIGN 10

1. Strive for consistency 13

2. Enable frequent users to use shortcuts 13

3. Offer informative feedback 14

4. Design dialogues to yield closure 15

5. Offer simple error handling 15

6. Permit easy reversal of actions 16

7. Support the internal locus of control 16

.8. Reduce short-term memory load 17

E. TESTING TOOLS 17

S- 1. EFFIGY 19

t 2. ASSET 21

3. M othra 21

IV

F. PROBLEM STATEMENT............................. 23

G. OVERVIEW OF REMAINING CHAPTERS.................. 24

11. TOOL DESCRIPTION................................... 25

A. TOOL OVERVIEIW................................. 25

B. VIEWER OVERVIEW............................... 27

C. SUNVIEW OVERVIEW.............................. 28

1. VIEWER Internal Structure......................... 32

D. WALKTHROUGH OF FUNCTIONS OF MAIN PARTS.......... 36

1. VIEWvWIN................................... 36

a. Declarations............................... 36

b. Frame and Subwindows......................... 37

c. Procedures................................ 40

2. WALKWIN algorithms............................ 44

a. DecL1uations............................... 44

b. Frame and Subwindows......................... 44

c. Algorithms................................ 46

(1) Circles and lines.......................... 46

(2) Graphical Representation of ACFG...............47

(3) Buttons and Menu......................... 49

E. CONCLUSION.................................... 50

V

mI. EXAMPLE VIEWER SESSION 54

A. ASSUMPTIONS................................... 54

B. EXAMPLE...................................... 54

1. Initiate SunView................................ 54

2. VIEER...................................... 55

a. Initiating VIEWWIN.......................... 55

b. Selecting Analysis Tools........................ 56

3. WALKwiN................................... 56

a. Initiating WALKWIN.......................... 56

b. Starting WALKER........................... 60

c. Traversing the graph........................... 62

d. Saving work............................... 78

e. Running LISTER............................ 80

4. FALTWIN................................... 80

a. Initiating FALTWIN........................... 80

b. Traversing the graph and setting the fault............. 82

c. Saving work............................... 88

5. SPACEWIN................................... 90

IV. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

RESEARCH... 91

A. CONCLUSIONS................................... 91

vi

B. LESSONS LEARNED 92

C. RECOMMENDATIONS FOR FUTURE RESEARCH............ 93

APPENDIX A... 96

APPENDIX B... 105

APPENDIX C... 113

APPENDIX D... 131

APPENDIX E... 206

APPENDIX F... 208

APPENDIX G... 226

APPENDIX H.. 239

APPENDIX I... 242

LIST OF REFERENCES..................................... 256

vii

BIBLIOGRAPHY 258

INITIAL DISTRIBUTION LIST................................. 260

viii

ACKNOWLEDGEMENTS

We begin our acknowledgements with heartfelt thanks to our thesis advisor,

Timothy Shimeall. His patience is beyond measure, and he was able to keep us

motivated during the long process. His guidance and wisdom were our mainstay for the

past months. We thank our second reader, LCDR Rachel Griffin, for her wonderful

suggestions along the way.

We appreciate the support from those near and dear to us. Jim Merry provided

insight and assistance in the use of WordPerfect, and the creation of several key figures

in the document. Kathy Monti bore two daughters (Natalie and Lia) days before

completion of this thesis, and in the months leading up to delivery (of babies and thesis)

was a source of inspiration to us by her cheer and patience.

We appreciate also the support of our classmates through the past months, as well

as from the beginning of our studies here at the Naval Postgraduate School.

ix

I. INTRODUCTION

Research in software system development continues to search for methods to

improve the quality and reliability of systems at reduced cost. Software continues to be

the major cost aspect in total system development. Large systems consist of many

components with complicated interactions. The focus of testing is to prevent bugs or,

if it cannot prevent bugs, to detect them in software. (Beizer, 1983, pp. 1, 3) The size

and complexity of large software systems make thorough testing difficult. Software

system failures continue to surface in some of the most thoroughly tested systems in the

world like those at AT&T and NASA.

Software testing tools in themselves are a recent development in the life time of

computers and programs. The future of software engineering is an integeted

environment containing all the development and testing tools necessary for software

engineers to produce reliable, efficient, and cost-effective software. These types of

environments, on the development side of software engineering, have become

synonymous with the term CASE. Most CASE texts don't cover the testing side of the

development project. Fisher talks about "stress testing" on a system, using a testing

harness to test individual modules. Separate quality assurance groups (the testers) usually

build these test harnesses. (Fisher, 1988, p. 48) Few authors of CASE tools address the

complete software testing package needed to validate thoroughly future large scale

projects. Even code generated via future specification languages will still need thorough

testing, to ensure that the specified system meets operational needs.

Unfortunately software testers have a long way to go before they can realize this

dream. Adrion, Branstad, and Cherniavsky reported in June 1982 that of the methods

used to test software systems, "the most successful have been the disciplined manual

techniques, such as walk-throughs, reviews, and inspections, applied to all stages in the

life cycle." (Adrion, Branstad and Cherniavsky, 1982) Their observations are still true

today. The human mind is flexible, adaptable, portable and robust when analyzing code.

It works well for small systems. For large systems, with their attendant large amount

of detail affecting reliability, only automation will make thorough testing feasible,

practical, efficient and cost-effective.

Automation requires formalization of development and design of software. But in

testing there has been little progress toward developing a theoretical basis from which

to relate software behavior to validation and verification. (Adrion, Branstad and

Cherniavsky, 1982) This lack of a sound theoretical foundation is a problem with which

researchers continue to struggle.

A. TOOL TAXONOMIES

Before examining any specific tool or environment now available, a brief look at

a taxonomy of automated tools is in order. Ramamoorthy and Ho broadly classify

automated tools under three groups: operational mode, application, or function. The

operational mode grouping partitions tools into static or dynamic analysis methods.

2

Static analysis analyzes the logic and structure of a program without running the

program, and looks for properties determinable from the source code alone. Dynamic

analysis requires the tester to execute the program, observe its behavior, and look for

runtime properties.

The application grouping partitions tools by their use in a specific phase of

development. These tools should span the entire spectrum of the software development

cycle when used correctly. A software development system might include tools for

design analysis, debugging, testing and partial validation.

The functional classification partitions tools by their specific functions. For

example, static analysis tools would include: code analysis, program structure checks

and module interface checks. Code analysis tools perform syntax analysis on the source

code, extracting information used to find error prone constructions, and module

relationships. For instance, a compiler is a complex example of a code analysis tool.

(Ramamoorthy and Ho, 1975) Program structure analysis tools are essential for software

validation. This analysis technique often includes program graph generation, modelling

a program as a directed graph with nodes representing the flow of control.

Code analysis and structure analysis are module tests that analyze the active

module. Module interface tools look for various anomalies across module boundaries

and are global checks. (Ramamoorthy and Ho, 1975)

Dynamic analysis tools might include: runtime behavior monitors and test case

generation. Testing tools that monitor a program's runtime behavior can trace a variable

3

throughout the execution of the program, or record paths executed by particular test

cases.

B. TYPES OF TESTING

Functional testing views the program or system as a black box. Functional testing

provides inputs to the program or system, and verifies the outputs for conformance to

preset objectives. Functional testing normally takes the user's point of view. Structural

testing, on the other hand, deals with the implementation details of the program or

system. Included in the considerations are the style of programming, the source

language, and the coding details. The boundary between the two is fuzzy, and the user

will see only the outermost layer. (Beizer, 1983, pp. 4 - 5)

Since exhaustive testing is impractical, Ramamoorthy and Ho define "complete"

testing in more relaxed terms. For example, one might consider a program "tested" if

all executable statements execute at least once. This is just one possible definition of

complete testing. Different testers may find their own definitions of necessary and

sufficient test cases. Automation suits complete testing.

Formal proofs of correctness rely on both functional and structural concepts. A

formal language describes the requirements, and an inductive proof uses each statement

to show that all possible input sequences will produce correct output. These proofs are

y= expensive, and normally limited to programs like a security kernel for a system or

other crucial software. (Beizer, 1983, p. 14) At present, a formal proof of program

4

correctness is infeasible for large systems. A program in Algol with 433 statements

required 46 pages of proofs. (Ramamoorthy and Ho, 1975)

Structural and functional testing are not contradictory ideas. There is a time and

place for use of each. Both methods are effective, though each has certain limitations.

In general, system testing is functional, while unit testing is structural in nature. In

principle, a functional test could detect all bugs in a program, but it would require an

impractical amount of time. On the other hand, while structural tests are finite they

cannot detect all bugs even if executed to completion. (Beizer, 1984, p. 8)

To have a complete functional test, input r-.:ust include all possible input streams.

In each case, the program would either accept or reject the input stream. If the program

accepts the stream, it either produce a correct output or an incorrect output. If the

program rejects the stream, it should produce an output showing the rejection, so in

.very possible case there would be some sort of output. (Beizer, 1983, p. 13) A

command line interface would suffice in this particular set of testing, as the user could

enter data from the keyboard or from an input file. A way to capture the output would

be necessary in order to provide the capability of running several input streams at once,

and then evaluating the results later.

Debugging tracers are dynamic software tools that tell the user what happened

during a particular run of the program. When debugging tracers use a certain set of

input data, they can show what parts of the program execute in what order. There has

been much development in this area, and most mainframe compilers are capable of

5

supplying runtime traces at varying degrees of sophistication. At times the process of

debugging is so difficult, the programmer welcomes any assistance. (Green, 1981)

The use of path testing is the cornerstone of all testing. It focuses on the control

structures of a program. For our purposes, a path is any executable sequence of

instructions or statements that go through a routine. To be more specific, the path will

start at a junction (the program entrance or designated statement) and proceed until it

reaches another junction (the program exit or designated statement). The goal is to show

that the actual behavior of the routine matches its intended behavior. Testers show this

by exercising multiple paths, but in practice the number of paths is often infinite. Each

decision doubles the numbers of paths, each case statement multiplies the number of

paths by the number of cases, and each loop has a potentially infinite number of cases.

So achieving absolute assurance is not only unrealistic but unachievable as well.

Therefore, path testing is accomplished over a smaller set of paths, carefully selected so

they meet the above stated goal. If unable to accomplish that, they should at least catch

most bugs a unit-level test would catch. (Beizer, 1984, pp. 37 - 38)

Selective testing exercises a program with data prepared by the programmers.

Because the programmers prepare the data to test their own code, they unavoidably bias

the set of test inputs.

Exhaustive testing requires the tester to execute every executable path at least once.

Exhaustive testing is impractical and unrealizable usually because of the enormous

number of paths requiring execution. The number of executable paths grows

6

exponentially and testing them even for small programs would exceed the lifetime of

most testers.

Each path will have associated with it the inputs that force the execution of that

particular path and the results (outputs, state changes, database changes) for that path.

Tactics should include sufficient paths for coverage of the routine/program and a

selection of paths that are short and functionally sensible. The number of changes from

path to path should be kept to a minimum. It is better to use a greater number of simple

paths than a small number of complex paths. (Beizer, 1984, p. 41)

One way to obtain path confidence is with instrumentation, the simplest of which

is running the routine under a trace. We encounter several problems with this scenario:

* A typical trace produces voluminous output. The tester gets more data than he
wanted. (Beizer, 1984, p. 47) Studying the source listing simplifies the process
of analyzing this data and determining an answer to a given question. (Green,
1981)

* Traces involve a very high overhead, which may destroy timing relations in the
program. Interrupt handlers, device handlers, communication interfaces, and other
such routines may not work in the trace mode.

* Because a trace may change location dependencies, bugs may exist when the
program runs without the trace and disappear with a trace. (Beizer, 1984, p. 4 7)

* These programs are usually not interactive. (Green, 1981)

A recent development in software testing is the study of failure region analysis.

This is the study of errors occurring in proximity to other errors, which Myers referred

to as error clustering. Ammann and Knight described this error clustering as "failure

regions." (Bolchoz, 1990, p. 3)

7

A failure region is a region of a program's input space, mapped by faults in the

program's source code, to failures in the output space. The purpose of failure region

analysis is to improve testing efficiency by reducing the number of redundant initial tests,

preventing redundant multiple error detection. Failure region testing may also act as a

guide for later regression testing.

Upon isolating a failure region, the tester can omit any test cases that fall within

that region from the testing process until the programmers correct the fault.

Programmers correct faults by changing the source code. The tester can then use the

failure region as a guide for testing the correctness of changes. By incorporating failure

region testing into the complete testing package, testers can avoid duplicating test cases

and proceed on to as yet unexplored test cases. In this way testers can uncover multiple

errors before sending a program back to the programming team for corrections.

Inequalities derived from the combination of three sources bound the failure region.

Those sources are:

* The reachability condition for the code with the defect.

* The conditions under which the calculations in that defective code produce an
erroneous result.

* The conditions in which later process does not mask the erroneous value

Research efforts are underway to automate the failure region analysis process. The

motivation for this thesis is the research effort to integrate these automated failure region

8

tools into a graphical user interface. Later chapters discuss the tools and e, vironinent

in more detail.

C. ENVIRONMWNT OF TESTING TOOIS

Future program development environments will provide the tester with many tools

designed to ease the program testing process. These include lexical analyzers, dataflow

analyzers, automated instrumentation, smart compilers, automated test data selection, and

knowledge-based program testing aides. This is a relatively new area of research and

new software testing technology will lead to new testing tools.

During the early 70's reliability and quality-assurance concerns in software

engineering gave rise to systematic testing procedures, notations of formal program

correctness, and models of fault tolerance and total system reliability. Analysis of actual

allocation of development effort and expense appeared. The 80's saw the rise of CASE,

with the development of automated tools corresponding to each phase of the snftware life

cycle, appearing on stand alone workstations. In the area of software testing tools, there

are few articles addressing how to set the foundation for these types of environments to

enable testers to add/delete tools to/from the environment at arbitrary points in time.

(Lewis and Oman, 1990)

This critical part of the software life cycle must continue to evolve. Part of this

evolution is the recent emphasis on human-computer interaction. A survey of 15

representatives of industry and academia revealed that the pervasiveness of graphical user

interfaces, including speech and other ways to interact with a computer is a clear sign

9

that all software of the future must address the users' needs for ease of use. The

designers of a software testing tool support environment must consider the needs, desires

and frustration of the individual tester. As simple as it sounds, the environment should

provide the tester with information that helps analyze the program. Many tools now

available output large amounts of confusing data with little real analytical value. The

environment designer should try to help the tester focus on what is important, and

remove as much ambiguity from the analysis as possible. (Lewis and Oman, 1990)

D. INTERFACE DESIGN

Most testing tools are research efforts, and give little consideration to the interface

design. This makes them difficult to use. Tool environments should use current

interface technology so users won't have to rely on short term memory to use the system.

The system should supply all the support and documentation users need.

The interest in designing "good" user interfaces has grown in recent years, as

computers must serve a more diverse group of people with varying technical expertise.

Before the proliferation of personal computers, there were custom-built programs and

personnel specially trained to use them. It was easier to train the few users than to build

software that worked naturally with the user. Now user interface quality has become a

primary issue, and phrases like "user-friendly" are everyday language. (Brown and

Cunningham, 1989, p. 1)

Human-computer interaction software is a challenging endeavor. There are three

developments that have altered this field. First, there now exist powerful workstations

10

with bitmapped screens and pointing devices. These provide the technological base for

the design of the interface. The computer's interactive capabilities have drawn attention

as applications have become increasingly innovative. Last, because today's software is

becoming more complex, the ability to communicate better with the computer is no

longer just a luxury; it is a necessity. (Fischer, 1989)

In writing human-computer interface software, we must begin with the human as

the fixed point. We must distinguish between what the computer will do and what the

human will and can do. During this process the designer will make assumptions about

what the user will want to do. While making these assumptions, the designer must

remember that each user is an individual, with their own talents, goals, knowledge and

preferences. (Fischer, 1989)

How do people process various sorts of information displays? How d they use

this information to solve problems? The study of human factors has concerned the

physical aspect of the interface. For hardware, this has produced rules saying to space

and align the knobs properly and design the displays and workstation layouts based upon

the idiosyncrasies of human anatomy. Researchers have labeled this area of research

"cognitive ergonomics". Ergonomics is an accepted term meaning "the study of the

problems of people in adjusting to their environment; especially, the science that seeks

to adapt work or working conditions to suit the worker." It now must include problem

solving and the analysis of information displays. (Curtis, 1981, p. 1)

Can one describe what makes a good interface? Every user of a computer has a

different idea of what makes a "good" user interface. Begin with the definition of user

11

interface - it is not simply a collection of code objects. A user interface is a way of

ensuring that the user can work effectively with the software. (Brown and Cunningham,

1989, p. 1)

A user interface should handle all input and output. It should convey all the

instructions about the program's use, and allow the user to control the program as

naturally as possible. The interface also should provide the program's results to the user.

(Brown and Cunningham, 1989, p. 5)

While there are no complete human-computer interface theories, researchers have

proposed methods and principles. (Fischer, 1989) Shneiderman postulates eight rules

of design for user interfaces. They are:

" Strive for consistency.

" Enable frequent users to use shortcuts.

* Offer informative feedback.

* Design dialogues to yield closure.

" Offer simple error handling.

" Permit easy reversal of actions.

* Support the internal locus of control.

* Reduce short-term memory load. (Shneiderman, 1987, pp. 61 - 62)

Now an examination of each of these principles.

12

1. Strive for consistency

This applies to single actions and sequences of action, and may involve

prompts, menus and help screens. Interfaces should keep exceptions to a minimum and

be comprehensible to the user. (Shneiderman, 1987, p. 61) Consistency is the mental

model the user has of a particular application. It is the way in which the user controls

the application. Besides consistency, the interface should provide some flexibility to the

user, though the ideas of flexibility and consistency are not without some contradiction.

(Brown and Cunningham, 1989, p. 9) The user should feel comfortable when entering

the information, for an awkward input design is very noticeable. (Brown and

Cunningham, 1989, p. 15) If there are several modes available within the single

application, consistency becomes more difficult. The best form of consistency is in a

modeless application. If the modeless aspect is too hard, make the primary application

the standard mode, so the exceptions will be minimal. (Brown and Cunningham, 1989,

p. 23)

2. Enable frequent users to use shortcuts

As the user gains knowledge of the program or system, they can reduce the

interaction with the interface, and increase the speed of the interactions that remain. A

knowledgeable user will want special keys, abbreviations, hidden commands, shorter

response times and faster display times. (Shneiderman, 1987, p. 61) Humans are not

static beings. Though all users begin as novices, and some may remain in that

classification, they also may progress into the casual or expert user class. (Fischer,

1989) The options for input are recognition memory or recall memory. If both options

13

are available to the user, it will allow for greater flexibility. The recognition memory

will associate the command choice with a given action, as in a menu. For the more

experienced user, the command line options rely on the user's recall memory. (Brown

and Cunningham, 1989, p. 22) Command systems are more complex than menus,

require more training to use them, and require the user to possess some typing skills.

The interface requires more error handling capability, since input is unlimited.

Command line interfaces are usually fast and flexible, and preferred by an expert user

when they require speed or special functions. A menu system limits the user to the

choices displayed on the screen. While the error handling need not be as intensive, they

are usually slower and less flexible than the command line mode. (Brown and

Cunningham, 1989, pp. 25 - 26)

3. Offer informative feedback

Each action by the user should have feedback from the system. The level of

response should equate to the action performed. A visual presentation can provide an

environment for showing changes. (Shneiderman, 1987, p. 62) Users judge new

computer systems more on the quality of their communication capabilities than on their

processing speed and their memory size. The human-computer interfaces of the future

should take advantage of the technology now available. The modern workstations

provide many possibilities, yet many interfaces are still command line oriented. It will

take an effort to take advantage of these possibilities in the design of future software.

(Fischer, 1989)

14

The human-computer interface should help the user make intelligent choices. In

every communication there is a speaker and a listener role. The speaker presents

information and the listener tries to understand the information. The listener must be the

more intelligent of the two, because he must not only understand the situation, but how

the speaker presents it. In a human-computer interface, the human is the most intelligent

agent. The computer should provide the appropriate cues to allow the user to choose the

next step. (Fischer, 1989)

4. Design dialogues to yield closure

A sequence of actions should consist of a beginning, a middle and an end.

The system should provide informative feedback at the end of a group (closure). The

feedback provided can give the user a feeling of accomplishment or relief, and suggesting

that they may prepare for the next sequence of actions. (Shneiderman, 1987, p. 62)

5. Offer simple error handling

The system should, as much as possible, prevent the user from committing an

error. When an error occurs, the system should detect the error and offer a simple

explanation of the remedy, or use simple mechanisms and handle the error. The user

should only have to correct the command, not reenter it completely. Also, the program

state should not change because of erroneous commands. (Shneiderman, 1987, p. 62)

Any error messages should have enough information contained in them that the user feels

comfortable with the message, and understand what they need to correct the condition.

The programmer of the software may be content with cryptic messages, but the normal

15

user will not tolerate wording that makes them feel inadequate, or does not provide the

information they need to correct the error.

6. Permit easy reversal of actions

While it is sometimes not possible to reverse C= action, most actions should

include an "undo" option. This can relieve user anxiety, and give them the freedom and

flexibility to explore new portions of the software without fear of committing an

irreversible action. (Shneiderman, 1987, p. 62) This will create an exploratory

environment for the human user. A user may not know what they want to do, while the

designer of the human-computer interface may not understand what the user needs or will

accept. (Fischer, 1989)

7. Support the internal locus of control

Both novice and experienced users prefer to feel they are in control of the

system and it is responsive to their actions. The user should be the initiator of the

action, and the system the responder. (Shneiderman, 1987, p. 62) For a computer to

be a truly useful tool, it should be invisible to the user to allow them to concentrate on

their problems and tasks. (Fischer, 1989) To provide comfortable program control, the

interface needs to understand the audience for the program. The designer must know

how the program's intended users think about the program's problem and how they

would go about solving it. The interface should provide a command system that allows

the user to solve the problem with as little reference to the computer or the program as

possible. (Brown and Cunningham, 1989, p. 23)

16

8. Reduce short-term memory load

The human information processing limit of "seven plus or minus two" means

displays should be simple. Designers should reduce window motion, and there should

be adequate training time for codes and mnemonics. They should provide help in the

form of on-line access to syntax forms, abbreviations and code. (Shneiderman, 1987,

pp. 61 - 62) Humans have some limitations the human-computer interface design should

accommodate. Humans have only two hands, so it will not suffice to have an interface

that requires two hands on the keyboard while concurrently using a pointing device such

as a mouse. Humans have weaknesses (limited short ter, i.atmory and execution errors)

but they have strengths (powerful information processing and visual systems). Memory

is a psychological factor of the human mind. There is a difference between recall and

recognition memory. Command line interfaces use recall memory, while a menu driven

interface uses recognition memory. (Fischer, 1989) Even an expert user will have times

when they are away from a particular application. The interface can assist them while

they are returning to their former level of expertise.

E. TESTING TOOLS

The basic tool for the programmer performing the tests is a description of the

program. This may be a listing or a diagrammatic representation. (Brooke and Duncan,

1981) Is it always true that a diagrammatic notation will be easier to read thai a

conventional one? NO! Some diagrams are good, while others are not. One advantage

is that it is easy to learn the conventions used in the design of a diagram, and a diagram

17

makes an excellent communication device for the less experienced user. The designer

must have the right image of the user before using the diagrammatic approach to

construct the user interface. (Fitter and Green, 1981)

Comnuting concerns processes, so the diagrams would need to be able to explain

processes. Fitter and Green propose five principles for the development of diagrammatic

notation. The information represented should

* be relevant

* be restricted to forms that are comprehensible

* redundantly recode important parts of the program

* iceai underlying processes they represent, in a responsive interactive system
allowing manipulation of the diagrams

* have a readily revisable notation. (Fitter and Green, 1981)

Designing a human-computer interface through a standard programming language

forces one to use a few primitives (read, write, format) based on a linear stream, vice

a two dimensional screen. It is a massive undertaking for the designer to build the

interface from low-level components. However, there are environments that are

functionally rich in abstractions. There are different classes of windows, screen layout

tools, and the designer may reduce the size of the application. What is the cost

involved? The designer must learn the abstractions and understand their use, but this is

a one-time cost for each designer. (Fischer, 1989)

18

There are construction/tool kits available for the design of human-computer

interfaces. The interface is separate from the application, but usually this is an

acceptable approach. Advantages of using a "toolkit" include the availability of an

environment for rapid prototyping of a class of interfaces, a high quality interface

achieved at a low cost, and architectures that provide uniformity and extensibility.

(Fischer, 1989)

In the design of the interface, the designer should consider the use of prototypes.

Since a detailed specification probably does not exist, and the interaction between the

user and the system is a dynamic relationship, the prototype will allow the user a chance

to "play" with the prototype interface. The user then provides feedback to the designer

before extensive coding of the actual interface. Concern for the human should be the

driving force in the design of the human-computer interface. The interface should be

comprehensible to the user and use a natural communication process. (Fischer, 1989)

1. EFFIGY

EFFIGY is an interactive testing and debugging system designed by IBM.

EFFIGY is a symbolic executer. Instead of supplying specific constants as input values,

the tester supplies symbols and runs the program on the classes of input. When the

control flow of a program is input dependent, EFFIGY does a case analysis, producing

output formulae for each class of inputs determined by control flow dependencies.

Appendix A is an EFFIGY session script with comments in italics. (Ramamoorthy and

Ho, 1975)

19

EFFIGY is a good example of what many command-line interfaces looked like 15

years ago and still look like today. Limitations of the system hardware and operating

system had some effect on the 1ok of EFFIGY. The concerns of the designers at IBM

were probably more on what EFFIGY did than how it presented its findings. The system

prompts the user with an ".," symbol. All the lines that begin with this symbol in the

script are user input. Very little else went into the interface design. The system has no

menus or help screens, which makes for a very steep learning curve for novice users.

Experienced users should find the interface adequate. EFFIGY allows the user to go

through the program and choose the path for symbolic testing. It provides informative

feedback to the user provided the system receives correct input. There is no reversal of

actions in EFFIGY. The user, once he masters the system, could find the output

valuable. EFFIGY runs on CMS under VM/30 on an IBM 370 model 168. The CMS

filing system and context editor are an integral part of EFFIGY for creating, changing

and storing procedures and command files. Considering when IBM developed the

system, it produced interesting output through a fair interface.

In recent years the UNIX operating system has been the development environment

of most software testing tools, probably because of its widespread use in software

development in colleges and universities. It is flexible and potent to work in, but

demanding upon the novice user. Its proliferation made it necessary for inexperienced

users to access UNIX's rich functionality. The predilection toward better UNIX

interfaces is catching on with the introduction of new, more advanced hardware.

20

2. ASSET

ASSET (A System to Select and Evaluate Tests) is an interactive software

testing tool based on dataflow testing. (Franld, 1987, p. 1) ASSET is still a "work in

progress" designed to work in the UNIX environment. ASSET accepts syntactically

correct programs written in a subset of Pascal. Appendix B is a script from an ASSET

session. ASSET uses the command-line format, incorporating help messages, menus and

consistent prompts. ASSET offers informative feedback to users when they make

mistakes. It allows users to correct and continue processing, providing contained choices

where necessary. The ASSET "command level prompt" is distinct from sub-prompts to

help the user identify where he is at any time. The type of data that ASSET provides

the tester is useful and interesting. It automatically instruments the program before

compilation, and helps the tester by tracking which paths in a procedure or function the

tester has yet to exercise. It also produces a graphical represeatation of the paths

available in a procedure or function. This graph is useful when analyzed with the copy.p

file. ASSET and tools like it have potential as part of the integrated environment

discussed earlier. Some researchers are beginning to design their interfaces so other

testing tools can eventually integrate into their environments. The Mothra testing tool

is an available tool with this vision.

3. Mothra

Purdue University's Mothra is an integrated set of tools and interfaces that

support the planning, definition, preparation, execution, analysis and evaluation of tests

of large systems. (Lutz, 1990) Mothra lets you:

21

* selectively and systematically create mutant programs

* execute the mutants on test data

* compare the resulting mutant output with that of the original program

* measure test data adequacy

The basis for Mothra is mutation analysis, which evaluates the adequacy of test

data used while testing a program. It does this by introducing syntatically correct

changes into a program, where each change represents a likely error that the programmer

might make. (Lutz, 1990) Appendix C is a script of a session with Mothra run on the

VAX 711/85. A windowed interface exists for Mothra with additional graphics

enhancements still under development. The designers of Mothra developed a much more

sophisticated interface than the previous tools mentioned. Mothra makes extensive use

of menus and sub-menus throughout, that jog the user's memory. It is a sophisticated

tool that requires time to learn. Like ASSE1T, there are consistent sequences of actions

and similar terminology for prompts, menus and help screen. Appendix C shows

feedback from Mothra. The system is constantly reporting back to the user what is

happening during each phase of mutant generation and testing, providing informative

feedback to the user. Mothra allows the user to return to previous menus so actions are

reversible. It also has on-line error checking and help. The developers organized

Mothra's output in a logical, useful manner for the user. They used tables and

histograms whenever possible to organize and display data. The user can look at

whatever data he likes through a system of menus. The Mothra project is an ongoing

22

effort that will eventually incorporate other testing techniques into the interface to create

the type of testing environment described earlier.

The environments examined here need to mature even more before they can

resemble the integrated testing environment needed to test and verify the large software

systems of the future. The literature suggests that Mothra is on the leading edge of

automated testing technology coupled with advanced interface design. It deserves further

study. Researchers should develop interface designs concurrently with the testing tools.

They must consider human factors in their designs. Good interface designs will improve

performance, speed, error rates and user satisfaction. The future of automated testing

will have to make use of new technology to test the increasingly complex software

systems of the future.

F. PROBLEM STATEMENT

Graphical user interfaces have become an integral aspect of software design.

Though software testing tools tend to be used by a select group of skilled software

testers, ease of use is a factor, and a good interface will help to move a testing tool from

simply research to a practical level. Our goal is to use the eight principles proposed by

Shneiderman, combined with testing tool output representation to design an interface to

assist in the use of failure region analysis tools. In doing this, we will identify general

principles for the design of testing tool interfaces and indicate issues that remain to be

explored.

23

The work involved in the completion of this thesis was split between the authors.

LCDR Abel concentrated on the user interface aspects of the research and coding of

VIEWER, while CAPT Monti concentrated on the tool interface aspects of the research

and coding of VIEWER.

G. OVERVIEW OF REMAINING CHAPTERS

Chapter II examines the way the tool interface has been developed and how it

reflects the principles of "good" interfaces. A brief description of each tool is provided,

and its relation to the interface developed as well as the representation of each tools

information.

Chapter III provides an extended walkthrough and information necessary for the

user to use the interface.

Chapter IV provides a conclusion and a summary of what has been accomplished

thus far. It also indicates those areas that require more research. We explore the

advantages of using the tools via the VIEWER graphic interface vice command line or

other type of interface.

24

II. TOOL DESCRIPTION

A. TOOL OVERVIEW

The process of analyzing failure regions begins with a compilable Pascal program

with one or more known faults. A set of five tools analyzes the failure regions

associated with the identified faults in the program. This set consists of REACHER,

WALKER, LISTER, FALTER and SPACER. (See Figure 2.1.) REACHER and

WALKER derive the conditions under which each program block in the Pascal program,

procedure or function may execute. The REACHER program is non-interactive and is

the first step in the analysis of failure regions. It accepts compilable Pascal source code

as input. REACHER creates an "acfg", an annotated control flow graph, for each

module of the Pascal source code. REACHER annotates the graph with the conditions

needed to reach each node from the preceding node. The output from REACHER is in

a format usable by WALKER, LISTER and FALTER. WALKER interactively leads the

user through a traversal of the control flow graph(s) associated with the program. The

result of WALKER is an acfg annotated with the conditions under which the tester

reaches each node from the start of execution. (Shimeall, REACHER, p. 6)

LISTER outputs an annotated source listing that provides a correspondence between

statements in the Pascal source code and the control flow graph nodes. This listing

assists the analyst in the use of WALKER and FALTER.

25

Initialization
File User

Displays
Defaults Commands and

Prompts

Pascal Source Failure alr
Source VIW RRegion

File Bounds

* ConditionsFalFiaFiur
a Pofript DescriptionBon

Tokens 0
* Graph

*Fault Condition
*Location Promnpt
*Condition SAE

REACHER/ aaas- FLE s um SAE
WALKER AC1 FATE Fauted ACG PAE

Figure 2.1 VIEWER Context Diagram

26

FALTER records the conditions under which calculations in the defective code

produce an erroneous result. It accepts as input the annotated control flow graph (acfg)

from REACHER or WALKER. FALTER also records the effect of a program defect

on the local program state. The result is a faulted control flow graph that serves as input

to SPACER. (Shimeall, FALTER, p. 2)

SPACER interactively analyzes the faulted control flow graph, calculating the final

failure bounds. It analyzes those conditions where later processing does not mask the

erroneous value.

B. VIEWER OVRVIEW

Testing tools are a recent development in the area of software engineering. Their

design placed little or no emphasis on the interface provided to the tester. A command

line interface is most common. A screen-oriented interface can free the tester from

certain responsibilities and allow them to focus on the issue at hand, i.e., the testing

process.

VIEWER is an interactive, graphical user interface. It facilitates the process of

analyzing a program to determine the region of the input space that a known fault maps

onto a failure. VIEWER provides a screen-oriented interface to the analysis tools. A

screen-oriented interface provides many capabilities. It can reduce the amount of

information shown to the user, so it allows the user to concentrate on the important facets

of the information. Multiple views of the same information may be provided during

program analysis. A screen-oriented interface can better isolate the properties of the

27

information. It allows the carrying across of information between tools to allow better

tracking of the testing process. VIEWER provides automated coordination between the

tools, freeing the analyst from dealing with automatable detail. This coordination is

important in the maintenance of a certain level of abstraction for the user. VIEWER

provides shorthand options for common commands and command sequences. This allows

for rapid and customized improvement in the automation of the analysis process as more

use of the tools suggests new automation strategies. (Shimeall, VIEWER, p. 2)

VIEWER uses several windows to interface to the analysis tools.

C. SUNVIEW OVERVIEW

SunView is the Sun Visual/Integrated Environment for Workstations (SunView 1

Programmer's Guide, p. 3). It is a user interface toolkit that provides support for the

creation of interactive, graphics based applications run within windows. The features of

SunView aiding the design of user interfaces made it an obvious choice for the

implementation of VIEWER.

SunView has building blocks for display, and a run-time system for input

management. The building blocks are visual representations of objects used to assemble

the user interface. (See Figure 2.2, from Beer, p. 49.)

Included in the building blocks are two basic classes of windows: frames and

subwindows. The purpose of a frame is to tie subwindows of different types together

so they can serve as a unit. There are four types of subwindows provided by SunView:

canvases, text subwindows, panels and tty subwindows. A canvas is a subwindow into

28

QindosI
Panel Canvas TTY Text

Panel Items

Button) Text Toggle

Choice) Message (r

Figure 2.2 SunView Building Blocks

29

which a program can draw. A text subwindow displays text and has built-in editing

capabilities. A panel subwindow contains items such as buttons, text items, menus,

choice items, and sliders. A tty subwindow is a terminal emulator in which the user

enters commands and executes programs. (SunView 1 Programmer's Guide, p. 3)

SunView applications draw graphics through Pixwin constructs. The most basic

use is in a canvas subwindow. (SunView 1 Programmer's Guide, p. 101) SunView

provides some built-in pixwin operations (vector, text, polygon, polypoint, line, etc.).

Drawing operations should not spill over into other windows and they should not be

visible in portions of the window covered by other windows. The pixwin construct and

operations provide an interface that meets the two above conditions. (SunView

Programmer's Manual, p. 103) Low-level operations on SunView images support and

supplement these Pixwin operations.

A SunView image on the screen and in memory is composed of dots called pixels.

SunView represents the image internally as a rectangle of pixels. The pixrect structure

is the construct used at a low level to access an image and operate on the image.

(SunView 1 Programmer's Guide, p. 103) This access and operation are not window-

based, so the user must avoid overwriting areas of the screen.

SunView is a notification-based system. A central notifier in each application

distributes input to the appropriate window. The notifier is a mechanism that distributes

events within a process. (SunView 1 Programmer's Guide, p. 20) SunView provides

predefined notify procedures or the programmer may define new ones.

30

While windows are the most important class of SunView objects, they are not the

only objects available. An icon is a small image that represents the application.

Command-related features include scrollbars, menus, and panel items.

SunView allows the programmer to attach scrollbars to canvases, panels and text

subwindows. The scrollbar allows the user to determine the visible area when the object

is larger than the window. A text subwindow has a vertical scrolbar by default, and

cannot contain a horizontal scrollbar. Panels and canvases may have both horizontal and

vertical scrollbars. It is the programmer's responsibility to create the scrolbars for these

subwindows. (SunView 1 Programmer's Guide, p. 267)

A menu allows the user to make choices and issue commands. They differ from

windows in that menus are visible while pressing the RIGHT mouse button. Also, menus

are less flexible, for they allow the user to choose only from a list of options.

A panel item is a panel component that simplifies a particular user-application

interaction. They include: message items, buttons, and text items. A message item is

only visible as its label. They display text to the user. A button item allows the user

to initiate commands. A default image provided by SunView represents the button, or

the programmer may define an image for the button.

A text item is a type-in field. The notify procedure indicated may accept input by

character, on specified characters, or by the entire field. (SunView 1 Programmer's

Guide, p. 159) The value of the text item is the string entered by the user. This string

appears on the screen after the label. (SunView 1 Programmer's Guide, p. 178) Panel

items all have a label component. The label is a string or graphical image. The button,

31

choice, toggle, and text items have a menu component that allows the user to select the

item directly or select from the item's menu.

Complex and flexible objects are the basis of the SunView model. Since SunView

can only handle very simple topologies by default, there are attributes to allow the user

to specify more complex layouts. The basic idea is to use a small set of functions with

a large set of arguments (attributes) to manipulate the objects. SunView functions use

variable length attribute lists, so a given call to create or modify an object mentions only

the relevant attributes. Most functions in SunView take pairs of attributes and values.

The number of pairs varies depending on how many attributes the programmer wishes

to set. (Beer, p. 50)

SunView provides a high level of abstraction in the design of interfaces. It also

provides the complexity needed to design an interface of the type desired. The

subwindows available in SunView provide precisely the functions needed to

represent/display the results and output from the analysis tools.

1. VIEWER Internal Structure

VIEWER includes interfaces for each of the interaction tools. The interfaces

interact with one another and with the testing tools. There also is interaction between

the subwindows of each interface. (See Figure 2.3.) The VIEWWIN interface contains

a tty subwindow and a panel subwindow. The tty subwindow receives commands from

the panel subwindow, or accepts command line input. The panel subwindow contains

a text input area and buttons for initiating the interfaces for WALKER (WALKWLN),

FALTER (FALTWIN) and SPACER (SPACEWIN).

32

WALKER

LISTER

A V

FALTER

r -

L
VIEWWINFALTWIN

LISP ~-- *SPACER

SPACE WI N

Figure 2.3 VIEWER Subblocks

33

The WALKER interface is WALKWIN. It allows for interactive use of WALKER

and the ability to call the non-interactive REACHER and LISTER. WALKWIN is a

frame with four subwindows in it. The text subwindow allows the user to view Pascal

source code or other text files. The tty subwindow is the link to the operating system,

and displays the output of WALKER. The panel subwindow contains buttons, text input

area and a menu, and all interact with WALKER.

The canvas subwindow displays the control flow graph. The control flow graph

is an integral part of the analysis of the failure region(s). A visual representation of this

graph aids the user in the test process. It presents information so the user can track the

conditions and location through the traversal of the graph. Though not present in the

prototype interface, a facility for interaction directly with WALKER via the control flow

graph display is under construction.

The text subwindow displays text files. While the user is testing a particular Pascal

program, he displays the program in the text window. He also can load other files into

the text subwindow. For example, during the running of WALKER, the user may want

to display a textual representation of the control flow graph. He may want to review the

output from LISTER or other information about the faults in the code. The scrolibar

allows the user to move quickly to the top or bottom of the file, move line by line, or

move to an area of the file.

The tty subwindow provides an area to record WALKER commands and displays.

It allows the expert user to dispense with buttons and use keyboard entry. The tty

subwindow also accepts UNIX commands, i.e., listing the files in the current directory.

34

The panel subwindow contains the panel items used for interaction between the user

and WALKER. The buttons are single action items, some of which use the string input

provided by the message item. The menu contains other functions, in the order in which

the user probably will need them - run, help, save and quit. Buttons do not function

unless the user is running WALKER. The user may find that additional common

command sequences should be represented as buttons. The programmer can create new

buttons and add them to the panel subwindow.

The FALTER interface is FALTWIN. It is similar in function to WALKWIN, and

therefore similar in representation and composition. It also has a base frame with four

subwindows - canvas, text, tty and panel. The menu selections are the same as for

WALKWIN. But the use of the other component parts differs from WALKWIN.

During the interaction with FALTER, the user may need to view different text files

than they used with WALKER. They may be interested in displaying faldt information

or results of debug sessions to characterize the effect of the fault. FALTWIN also

provides different button choices from WALKWIN. These buttons relate to the

interaction necessary to use FALTER. See Chapter Im for an example of this use.

In the prototype of VIEWER, the interface to SPACER is minimal. A tty

subwindow provides an area for the user to invoke LISP, and then SPACER. A panel

subwindow contains buttons for use with SPACER.

The interface to SPACER is limited by the current level of knowledge concerning

the use of SPACER. This portion of failure region analysis is the newest area of

research. It is not yet clear what is the best way to represent the output. A strict

35

geometrical approach may not be suitable or effective. Two dimensional representations

of a multi-dimensional region are inadequate or incomplete. Currently, textual output

is a form of output that can be understood and evaluated by the tester. As more usage

of the tool occurs, and testers develop a better idea of what the key properties are, a way

to represent these properties also will develop.

The other tools (WALKER and FALTER) are similar to other testing tools

(particularly static analysis tools that look for unreachable code). The understanding of

the key properties in their output/results are clear, and therefore can be represented.

While SPACER is still in its early stages, a less rigid prototype will allow the interface

to develop with the tool.

D. WALKTHROUGH OF FUNCTIONS OF MAIN PARTS

This section contains specific explanations for the algorithms used in the

development of the interfaces. A copy of the code is in Appendix E.

1. VIEWWIN

a. Declarations

The VIEWWIN code begins by including the SunView header files

necessary for using the desired SunView functions and procedures. Following these

header files are macros, variable declarations, and procedure declarations. To use an

icon when closing a frame, the programmer must load the icon image into an array.

36

Using the mprstaticO' macro, the programmer puts this array into a pixrect structure

for use with the icon createO function within the main block of the program.

b. Frame and Subwindows

VIEWWIN contains a tty subwindow and a panel subwindow. (SunView

1 Programmer's Guide, p. 213) Attributes set the heights and widths. Each subwindow

has attributes identifying that they belong to the base frame, and what type of subwindow

they are. The WINBELOW attribute places the panel subwindow below the tty

subwindow.

The function window~fit(base_frame) adjusts the VIEWER base frames

to contain the various subwindows. This is useful when the user want to scale the

window size in SunView. The function windowcreateO does not display the windows

on the screen. The function window_main loop(basejframe) displays all created (and

visible) objects on the screen and puts the. tool in a loop awaiting user input. The

VIEWER interface objects must appear before the call to windowjmain.oopO. (Beer,

p. 51)

All the VIEWER interfaces use the window createO function for all

types of windows. This function returns a handle to the object created, and the handle

declaration appears at the top of the program. Changing the attributes passed to the

windowcreaeO function controls the appearance of the VIEWER interface windows.

These attributes include: the parent item, a label, an icon and other information.

In the text of this thesis, italicized text refers to SunView

functions and procedures.

37

The base-frame does not have a parent item, so this attribute is NULL.

For each base frame, a defined position ensures the presentation of the frames is in a

useful and consistent manner. Defined positions means the starting location of the (0,0)

coordinate for the base frame. The user could change these starting coordinates within

the program, or move the frames via SunView mouse/menu commands. The label

identifies the displayed interface for the user. The icon attribute provides the user the

ability to close the frame and have a relevant picture appear. All the VIEWER interface

base frames have icons for closing the frame. (See Figure 2.4.) Icon designs jog the

memory of the user when they suspend an operation.

By default, a tty subwindow forks a shell. It is necessary to send button,

menu, and text input to the tty subwindow. The function tyswinputO sends input to the

tty subwindow. It appends the character sequence in a buffer onto the tty's input queue.

It returns the number of characters accepted. The program treats the characters as if

they were a keyboard entry. This function provides a simple way for the user to send

input to the program running in the tty subwindow. (SunView Programmer's Manual,

p. 213)

The panel subwindow contains a filename input area (a text item) and a

button area. The text item provides a way for us to input text to the panel subwindow

that the tty subwindow uses for processing. VIEWWIN uses the panel.create_itemO

function with attributes for the subwindow in which to place the item, the prompt to

display, and the length of input displayed. The subwindow displays 50 characters due

to window size constraints. The length of the input field defaults to 80 characters.

38

vL
VIEWWIN Icon WALKWIN Icon

FL S
FALTWIN Icon SPACEWIN Icon

Figure 2.4 Icons

39

The buttons in VIEWWIN have similar definitions. Each button

definition uses the SunView function panelcreate itemo. Attributes for the buttons

include information for which subwindow is the parent, that it is a button, the process

to notify when the user selects the item, and the image to present within the panel. The

SunView function panel_buttonimage0 defines how the button looks in the panel. The

image has attributes for the parent window, the name to put in the button, the width of

the button, and the font style to use. The panel buttonimageO function allowed us to

keep the look and feel of the VIEWER interface buttons consistent across the interfaces.

Instead of a name consisting of a string, the image may be an icon. (Our buttons that

activate menus in WALKWIN and FALTWIN use this feature.)

c. Procedures

Notify procedures that serve as values for PANELNOTIFYPROC

attributes are included in the code. The procedure "call-reacher" uses the filename

entered in the panel subwindow and sends a command to run REACHER on that file.

The procedure stores the filename and the command in a character buffer, and sends it
to the tty subwindow of VIEWWIN via the ttysw inputO function.

The "callreacher" procedure displays WALKWIN with the text of the

file shown in the text subwindow. To accomplish this, declarations include a character

buffer of length 81, an event of type Event (SunView), and a result of type integer. In

order to provide some error handling, the procedure looks for a "p" as the last character

of the filename as an attempt to ensure proper filename format, i.e., a Pascal file. The

procedure loads the filename into a buffer and the checks the last character. If the last

40

character is a "p", the procedure loads a call to REACHER concatenated with the

filename into the buffer and sends the result to the tty subwindow. The algorithm sends

a command to the tty subwindow to open WALKWIN with the filename as a parameter.

If the last character is not a "p", the "msg" procedure accomplishes the

error handling. This procedure displays a pop-up frame to alert the user of an improper

filename format. (See Figure 2.5.) It has two parameters: a string (the message to

display) and an integer (indicating whether to output beeps).

Within the "msg" procedure is used an integer "result", and event, and

a character string composed of the message "Press/"Continue/" to proceed." Result

equals the return integer from the alert.promptO procedure. A SunView alert is a frame

that contains one subwindow, a panel. The alen..promptO function may set attributes

for the display of the text message(s), the position of the frame, beeping characteristics,

and buttons. (SunView 1 Programmer's Guide, p. 202) It takes as parameters the frame

under consideration, the address of the event (user action) and the strings used (the

message sent in and the one hard coded within the function). It pops up on the screen

to notify the user of a problem or other things requiring attention. The alert has full

screen access - the screen freezes until the user gives a response. (SunView 1

Programmer's Guide, p. 199)

Alerts have better user interface facilities than menu..promptO, which

offers a simple box with no more than two choices. Alerts have an arrow to get the

user's attention, buttons, fonts, beeps and a 3-D shadow, and there can be more than two

choices. (SunView 1 Programmer's Guide, p. 199)

41

taurus%

F~gure 2.5 Alert Frame

42

The alert_promptO function creates the alert, pops it on the screen,

handles the user interaction, removes the alert, and returns a value. The alert used by

VIEWWIN has only one button - "continue" - since it only serves to notify the user of

an error in the format of the filename. (SunView 1 Programmer's Guide, p. 202) This

is the only choice needed by the user, for this is a simple alert that the filename is in an

improper format. Pressing the continue button clears the pop up frame from the screen.

It also clears the filename item by a call to panel setvalueO with parameters for the

panel item to set and what to set it to (an empty string).

The number of beeps sounded when the alert appears is the number set

by the user in their defaultsedit file. The programmer can set the alert to no beeps

despite the default. Programmers usually reserve beeping for unexpected events. A

response to a request would normally not beep when displayed. (SunView 1

Programmer's Guide, p. 208)

The "call-falter" procedure uses the same algorithm, except that

VIEWWIN does not call FALTER directly from the button invocation. Since FALTER

is interactive, the procedure displays the interface, passing the filename as a parameter,

and the user runs FALTER from FALTWIN. In a progression through the tools, the

filename would be the same one as used in WALKWIN, so the procedure performs no

error handling here.

43

2. WALKWIN algorithms

a. Declarations

WALKWIN uses several header files not found in the VIEWWIN source

code. This interface has more subwindows, and involves graphics. WALKWIN includes

two icon declarations. One represents the frame and the other is an image for a button

with an associated menu. This allowed us to differentiate between a command button,

which uses the default SunView image, and a menu button, which uses the imported

image. The user will find this less confusing.

b. Frame and Subwindows

The VIEWWIN frame passes the filename to WALKWIN, which assigns

it to a variable. WALKWIN uses that variable to load the file into the text subwindow

using the SunView windowsetO function. The WINX and WINY attributes align the

WALKWIN base frame with the VIEWWIN frame.

The layout of WALKWIN's base frame and subwindows considers

several ergonomic factors. The size of each subwindow is large enough to be useful, yet

small enough to create an organized interface. The text subwindow displays the text of

the Pascal code being tested next to the representation of the acfg in the canvas

subwindow. WALKWIN sets its subwindows' height and width attributes in pixels.

This allows very precise arrangement and alignment within the frame. These dimensions

are adjusted to allow for varying resolution in display screens.

44

WALKWIN's canvas subwindow has attributes for height and width of

the window and height and width of the canvas. The canvas is larger than the actual

subwindow, to accommodate large, complex graphical structures. Since the canvas is

larger than the window, WALKWIN includes scrollbars for moving around the canvas.

For consistency between machines, WALKWIN defines the location -f each scrollbar

explicitly, since different users may have different values in defaultsedit. WALKWIN

uses the attributes CANVASAUTOEXPAND and CANVAS AUTOSHRINK to adjust

automatically the canvas size when scaling the window. (SunView 1 Programmer's

Guide, p. 69)

The attributes of the text subwindow and the tty subwindow include

placement of them in relation to the canvas subwindow, using WINRIGHTOF and

WINBELOW. WALKWIN's text subwindow has an attribute to set the word wrap at

the word vi'e character level. This makes text displayed in the text subwindow much

easier to read.

Each command recognized by WALKER has a corresponding button

within the panel subwindow. The panel also has a menu for interaction with WALKER.

The menu becomes visible when the user presses the right mouse button with the pointer

on the menu button. We used the PANELCHOICE attribute to attach the menu to this

button. The image is the address of the pixrect of the icon image, as discussed earlier.

The panel subwindow has three text items for entry of strings to use with

WALKER commands and with the call to LISTER. The WALKER input area provides

string input for all the WALKER commands. LISTER format requires an input filename

and a name for the output file it creates. We explicitly positioned the text items within

the panel sub window. The WALKER input displays up to 50 of the 80 allowable input

characters, to allow for the input of the conditions or annotations. Since LISTER inputs

consist of only filenames, these text items display 15 of the allowable 80 character input.

c. Algorithms

(1) Circles and lines

We conceived a graphical representation of the acfg as circles to

represent the nodes and lines to represent the connections between the nodes. The

SunView pwvectorO provides a simple mechanism for drawing lines in the canvas

subwindow. Drawing a circle in SunView is not as simple. There is no predefined

pixwin or pixrect function for a circle.

SunView allows the programmer to import an icon image into a

pixwin object and display it within the canvas subwindow. The problem was that the

shape of the image is a square. There was some difficulty involved in removing the

corners so the circle remained.

A polygon, with the number of sides set high enough, approximates

a circle. To draw polygons, WALKWIN uses the pwpolygon_20 function. Initially,

we used the operation PIXSRC to fill the polygon reverse of the background. Briefly,

PIXSRC sets all pixels to true, so the polygon appeared in reverse video on the white

canvas background.

46

Aesthetically, we felt the circles representing nodes should be

unfilled - that is the center should be the same as the background. We tried the operation

PIXCLR, which displays the polygon in the same color as the background. This made

our polygons invisible, since the polygons lacked visible outlines. The solution was to

display a polygon with the operation of PIX CLR, then place vectors around the edge

to provide the outline of the circle. The result was exactly as desired. By choosing a

very large number for the sides, we achieved a smooth "circle". The large number of

sides does not impact adversely on the speed of the display in this implementation.

(2) Graphical Representation of ACFG

After parsing the target Pascal source file, REACHER produces a

control flow graph of the source code in textual form and saves this graph in a file called

"reacher-out". WALKER reads the control flow graph in to memory so the user can

step through the graph. VIEWER takes the control flow graph provided by REACHER

and produces a graphical representation of reacher-out in the canvas subwindow of

WALKWIN. To accomplish this we used the same macros, definitions and structures

used by WALKER to dynamically allocate memory and load "reacherout" into memory.

With the help of our previous experience in constructing SunView lines and polygons,

we designed an algorithm to read the control flow graph and produce the graphical

representation of it. The next section briefly describes this algorithm.

After WALKWIN reads the control flow graph into memory, it sets

a pointer called curnode to the root node in the control flow graph. We use a do-while

loop to read the binary tree and draw the graph. The do-while loop processes the graph

47

as long as the following conditions exist: the current node's left child is not equal to

null, or the current node's right child is not equal to null, or the top of the stack is

greater than zero. When these conditions exist then processing inside the loop uses three

conditionals to draw the graph in the walkwin canvas. The algorithm first checks to see

if the current node has a right child. If it does, walkwin pushes the node onto an acfg

stack, and increments the stack pointer. We assume that since the node has a right child

it also must have a left child. The algorithm computes the (x,y) coordinates for the next

left node and draws a line from the current (x,y) location to the left node (x,y) location

using the SunView pwvectorO function. We then draw a circle at the current (x,y)

location using techniques discussed earlier. We save the current (x,y) coordinates in a

position array and move our current (x,y) position to the location of the left child. The

program marks the current node and the curnode pointer moves to the left child.

If the right node is null the algorithm checks to see if the left node

is null. If it is, we decrement the acfg stack pointer and the node on the top of the stack

becomes the current node. The algorithm computes the (x,y) coordinates of the right

node and stores the position of the current node in the position array. We call

pw_vectorO to draw a line from the current (x,y) location to the right node (x,y)

location. We draw a circle at the current (x,y) location, then move the current (x,y)

location to the position of the right node. The current node becomes the right child.

If the current node has no right child and the left node is not null

then the current node's left child becomes the current node. The algorithm computes the

(x,y) coordinates for the next left node. We store the previous curnode (x,y) location

48

in the position array and use pwvectorO to draw a line from the current (x,y) location

to the new curnode (x,y) location. We draw a circle at the current (x,y) coordinates and

move the current (x,y) coordinates to the position of the curnode.

During this looping process if the algorithm moves to a marked

curnode, then we call a while loop to check the stack. If the top of the stack is greater

that zero then this is the signal to pop the stack. We retrieve the position of the marked

curnode from the position array and this becomes our current (x,y) coordinate. The

algorithm computes the next right node location and uses pwvectorO to draw a line from

the cumode (x,y) coordinates to the coordinates of the right child. We move the current

(x,y) location to the position of the right child and the curnode becomes the right child.

Then we pop the stack. This process continues in a while loop until we reach an

unmarked node or TOS is equal to zero.

(3) Buttons and Menu

Each button .s a corresponding notify procedure. They use a

buffer to load an input string. The string includes the cryptic command for WALKER

and the additional string input if needed by that particular command. The annotate,

change condition, join and goto commands use the additional string input from the

WALKER text item.

The "Walker Menu" button has its own procedure to handle input

from the menu. It uses the event received from the mouse action. SunView assigns a

value to each choice in the menu, beginning with zero for the first item. A switch

statement delineates the action to take based on the value detected. The variable

49

walkerrun indicates whether the user is running WALKER. It is initialized to zero in

the declarations section of the program. When the user selects "Run" from the menu,

the program loads the command to run WALKER on reacher-out in the string buffer.

If walkerrun equals zero, the program sends the string to the tty subwindow and sets

walkerrun to one. The panel set value(0 function resets the walker input area to an

empty string.

The other menu selections check for walker run equal to one before

sending the string to the tty subwindow. Each contains the panel set value() function

to reset the input area. In addition, the "Quit" selection clears the tty subwindow.

The "calllister" procedure is the notifier for the LISTER button

initiation. It composes a string to send to the tty subwindow including the strings for

input and output filenames and stores it in a buffer. The ttyinputO function sends the

buffer contents to the tty subwindow, and panel set valueO resets both the input string

input areas.

E. CONCLUSION

This chapter provides a detailed look at the development and design of the

interface. Every decision in the design considered the general principles outlined in

Chapter I. To review those principles, they are:

* Consistency

* Frequent Users have shortcuts

* Informative Feedback

50

* Dialogue yield closure

* Simple error handling

* Easy reversal of actions

* Internal Locus of control

* Reduce short term memory load

Consistency is perhaps the most crucial of these principles. The size and

appearance of WALKWIN's buttons reflect this consistency. The user will find that all

functionally similar buttons look the same. WALKWIN displays buttons that represent

a menu by an icon so the difference is readily apparent to the user. Though each tool

has a different way, or ways, to exit the program, the interfaces to the tools only use

"Quit" in the menu.

The tty subwindow in each interface provides the mechanism for expert users to

use shortcuts. They have command line access in any level.

User feedback is present in many forms. The buttons reverse video when pressed,

and are grey until action completes. This also provides closure dialogue. Of course, this

usually occurs so quickly the user sees a flash of reverse color. Titles on each frame are

a form of feedback. It is a way to verify that the proper interface has displayed. The

bubbles in the scrollbars move at the command of the user. They show position of the

user in the canvas or in the text suhwindow.

The principle of user feedback also appears in the representation of the information.

The user can see analysis results in several forms within the same interface. The text

51

subwindow presents the textual form of the Pascal source code, while the canvas

subwindow presents the graphical representation of the acfg corresponding to the Pascal

code. They can see the information change as the analysis proceeds.

The interface provides closure when the user selects quit from the menu of

WALKER or FALTER. The program not only ends the execution of the testing tool,

but also sends a command to the tty subwindow to clear, signally a completion of the

action.

There is little error handling in VIEWER. One example is the alert pop up frame

when entering the filename to use with REACHER and FALTER. When the filename

does not end in "p", the alert appears. This is also a form of user feedback.

This prototype provides reversal of action in the use of icons. Clicking the left

mouse button on an icon restores the operation.

The interface provides an internal locus of control. The user is in control of the

interaction with WALKER and FALTER.

To ease the load on short term memory, the buttons' labels use a descriptive name

vice the single letter command recognized by the program to which it interfaces. Since

all buttons are available for the user to see, they do not have to remember the cryptic

commands.

What does a testing tool interface need to represent? The analysis of failure

regions has a control flow graph, so an ability to present the graph is important. These

tools process and analyze Pascal source code. The user would want a way to display and

review the text and examine the acfg graph while they are running the tool. The tty

52

subwindow supports the need to interact with a running program. The buttons and input

areas in the panel are for easy access to commands and other reasons delineated above.

VIEWER allows the user to display multiple views of the information involved in

the program analysis. They can isolate the pertinent properties and concentrate on the

process of testing. The interfaces carry across information between the tools. The tester

tracks the processes better since the interface reduces the amount of information they

need to assimilate.

53

IM. EXAMPLE VIEWER SESSION

A. ASSUMPIIONS

The discussion in this chapter uses an example Pascal program, called "getangle.p',

which has a known fault. In this program, there is an observer, located at (XO, YO),

and an observed object, located at (XT, YT), with width W and length L. The purpose

is to compute the angle occupied by the observed object when seen from the observer's

location. Appendix E contains a copy of the code, with comments showing the acfg node

numbers.

We assume the user has some knowledge of Sun Workstations and SunView. Also,

the user should understand failure region analysis and the purpose of each tool involved

in the process.

B. EXAMPLE

1. Initiate SunView

The user begins by initiating SunView. He must be in the directory

containing the Pascal code to process. The user's command path must contain directories

for the tools.

54

2. VIEWER

a. Initiating VIEWWIN

To start VIEWER, the user enters "VIEWWIN" at the prompt within a

shell window of SunView. VIEWWIN appears on the screen. The upper subwindow

contains a UNIX command shell prompt. The lower subwindow contains a text entry

area with the label "Filename:" and three buttons, one each for WALKER, FALTER,

and SPACER. The maximum number of characters the user can enter in the text item

is 80. The control panel only displays 50 characters, but the string remains valid up to

80 characters. The user will lose any character entered beyond the limit of 80.

(SunView 1 Programmer's Guide, p. 179)

The input file should be compilable Pascal source code. To enter the

filename for processing, the user moves the cursor so it is within the lower subwindow.

The caret at the text entry item will be a dark triangle, indicating the location for text

input. The interface will not allow WALKER to run, nor display WALKWIN, unless

the filename provided ends in "p". If the filename does not have the proper format,

VIEWER displays a pop-up frame indicating that the filename is incorrect, with a

continue button. Depending on the default setting, a beep, or a series of beeps, alerts

the user of an error. The alert automatically places the pointer on the "continue" button.

When the user clicks on "continue" using the left mouse button, the erroneous filename

disappears, and the text item is ready for a new entry. The pop-up frame is a blocking

frame and recognizes no entries until the user presses the "continue" button.

55

b. Selecting Analysis Tools

The user enters "getangle.p" at the input text item, moves the pointer to

the WALKER button, and depresses the left mouse button. (See Figure 3.1.) When

pressing a button item, the rectangle inverts. Upon releasing the left mouse button,

SunView paints the rectangle with a grey background, which provides feedback that the

user selected the item and executed the command. The grey background clears when the

program returns from the notify procedure. (SunView 1 Programmer's Guide, p. 167)

REACHER processes the Pascal file, and output appears in the

VIEWWIN tty subwindow. If REACHER is successful, the message "Successful parse!"

appears in the tty subwindow.

3. WALKWIN

a. Initiating WALKWIN

WALKWIN positions its base frame on the screen, relative to

VIEWWIN. (See Figure 3.2.) The label at the top of the window identifies the

WALKWIN interface. WALKWIN displays the code for "getangle.p" in the text

subwindow. The canvas subwindow displays the graphical representation of the

annotated control flow graph for the main module of "getangle.p". WALKWIN provides

scrollbars for the text and canvas subwindows. The canvas subwindow has two

scrollbars - horizontal and vertical - while the text subwindow has only a vertical

scrollbar. Note that the scrolbars for the canvas do not have buttons on either end,

while the text subwindow scrollbar has buttons. To scroll, the user moves the cursor

56

taurus% u

Filename: lietangle.p
(space

Figure 3.1 VIEWWIN Screen

57

progrm ea I in ,otu)

const P a 3. 415926
var ang,XO,YOXT,YT,iLsreal;

function
Angle(XOYOXIYT, VT, LT:real) :real;
var SASBSCSDAXAY, BXBY, CXCY,
DXDY1 real;

Hal fWidth, HalfLength: real;

Function Slope (XI,Y1,X2,Y2:real):real~s1 n

Slope :- (Y2 - YI) / (X2 - X);
end;

begin
HalFWidth to UT / 2;

libraX U

Walker input string:, o

a erLister irut: Lister output:

Figure 3.2 WALKWIN Frame

58

into the scrollbar (the bar itself or the buttons) and clicks a mouse button. (See Figure

3.3 for the possible combinations.) (SunView 1 Programmer's Guide, p.27 1)

Mouse Pointer Action
Location

Left Button Line forward

Right Button Line backward

Middle Button Page forward

Middle Button Page backward
(shifted)

Left Bar Line opposite cursor to top

Right Bar Top line comes to cursor

Left Bar Bottom line comes to cursor
(shifted)

Right Bar Line opposite cursor to
(shifted) bottom

Middle Bar Line whose offset into the scrolling object
approximates that of the cursor into the
scrollbar is positioned at top (thumbing)

Figure 3.3 Text Scrollbar Mouse Commands

When the user presses a mouse button inside the scrollbar, the cursor

changes to preview the action for that button. Releasing the button causes the action to

59

execute. Holding the mouse button down repeats the action. (SunView 1 Programmer's

Guide, p. 271) The scrollbars allow the user to see parts of the window not displayed.

SunView provides standard text menus for the code displayed in the text

subwindow. To initiate these menus, the user moves the cursor to the text subwindow,

and depresses the right mouse button. SunView provides these menus for the

convenience of the user. They are not a necessary part of the failure region analysis

tools. The user can find a detailed explanation of these menus in the SunView manual.

The tty subwindow also has a built-in menu. The canvas and panel subwindows do not

have these standard menus.

b. Stai'ng WALKER

The panel subwindow runs across the bottom of the WALKWIN frame.

It contains all those items necessary for the interaction with WALKER, and the running

of LISTER. The first step in using WALKER is to run the program from the Walker

menu. The user moves the pointer to the WALKER menu icon, and presses and holds

the right mouse button. A menu appears with four choices - "Run", "Help", "Save" and

"Quit". (See Figure 3.4.) Only the "Run" option will function at this point. All other

menu choices and the buttons on the top row do not function unless the user is in the

interactive mode with WALKER. To initiate WALKER, the user selects "Run" by

moving the mouse until it highlights the "Run" command and releasing the mouse button.

This action calls WALKER on the default file name produced by REACHER

("reacher.out"). A copy of "reacherout" appears in Appendix F. The user is now in

the interactive mode with WALKER and output appears in the tty subwindow. For a list

60

rogram so angk Unu 'outu
cont Pi w 3.1415926536;

var ang,X,YO,Xfl,Lreall

funct ion
Angle OC,YO,X,Y,V,LT real) t real;
var SA, SB, SC, SD, AX,AY, BX,BY, CC, CY,
DX,DY: real;

HalfWidth, HalfLength: real;

r elfunction
Slope C~i,Yi,X2,Y2:

real):

Slope in. C YDi (X2-XD;
end;

begin
HalfWidth in VT 2;

i1bral

Na Ike
MaeU Run inputstring:

4 Help er Lister input: Lister output:
Save
Quit

Figure 3.4 WALKWIN Menu

61

of possible commands, the user selects the *Help" choice from the WALKER menu.

WALKER displays help information in the tty subwindow.

c. Traversing the graph

The user runs WALKER to achieve a couple of different functions.

After REACHER sets up each link of the graph with the immediate reachability

conditions, WALKER goes through the control flow graph and adds up those conditions.

On the other hand, the user wants to get rid of pseudonodes. These are nodes that

REACHER generates but the rest of the analysis doesn't require. The user should

collapse these nodes, e.g., begin-end nodes. The user checks the code displayed in the

text subwindow to be sure he is in the right place. The canvas subwindow gives the user

an overview of the control structures; the text subwindow gives the user program details.

The user selects buttons in the panel subwindow by positioning the pointer on the button

and depressing the left mouse button.

The user starts at the begin node of the main program. This is node 71,

located on line 70. The "@" prompt shows the line number in parentheses and the text

of the line. A begin-end statement is indicated by a blank line. The "c" prompt shows

the current reachability condition. It is always "true" for the first node. The program

gives the condition it is about to set, not the condition used to reach this node. The

program sets the conditions on the exit of the node. The left arc gives the condition and

the right arc gives the not of the condition. The "a" prompt shows commentary made

by the analyst. This field allows the analyst to make comments that will help him later

62

in the analysis process, but the comments are not processed by any tool. The user

displays line 71 in the text subwindow by scrolling down the text.

The user knows he wants to traverse the nodes of all modules in the acfg.

Looking at the acfg representation in the canvas subwindow, the user sees the traversal

in the main module of getangle.p consists of a series of left branches. The user goes left

from node 71 by clicking on the "Left" button in the panel subwindow. The program

sends the proper command to the tty subwindow telling WALKER to go left. The user

is now at the node 72, which is the "readln" statement of the main module. It is a good

idea to join these two nodes, since node 71 is a pseudonode for the begin-end statement

and unnecessary in later processing. The user enters the string "71 72" in the "Walker

input" area. He then moves the pointer to the "Join" button, and clicks on this button

to join nodes 71 and 72. The result is node 72, with a different line number and an

updated text string. (See Figure 3.5.)

The condition is still true. The user goes left to node 73, which is a call

to the function Angle. Node 74 is the assignment of the result of that call to the variable

"ang". This is another pseudonode generated by REACHER. The other tools do not use

pseudonodes so the user can join nodes 73 and 74. WALKER knows the text of one is

a substring of the text if the other so it doesn't duplicate the text string. The line number

is still 72. (See Figure 3.6.) The user goes left to node 75, which is the "writeln"

statement of the main module. This is the last node in the main module. The user

simplified the main module of getangle.p by joining pseudonodes to other nodes of the

acfg.

63

begin
readln(XO YO Xr YT ' ,L);
ang:. An i(OYO,Xr,YT,W,L);
writeln(Observed angle is 1,ang);

end.

bra wrnker -r reacher-out
ode: 71

a 'true'

odes 72
1(71) readln(XO,YO,Xr,YT,W,L)'
s'true'

J71 72
odes 72
8(70)' readln(XO,YO,Xr,YT,,L)'
* 'true'

.1 o ae e 't ro
L~JWalker input string:,

a rLister input: Lister output:

F"igure 3.5 WALKWIN Screen With Initial Commands

64

begin
readlnXO YOX, Yr, W,YL);
anamfAng eXO,YO,XI, Y,V,L) ;
writeln(' Observed angle is ',ang);

end.

,1

e73
: (72)'Angle(O,YO,XT,Y,V,L)'
:'true'

ode: 74
3(72)' ang. Angle(XO,YO,XT,YT,W,L);'
s 'true

J 73 74
odes 74
:(72)' ang:- Angle(XO,YO,XT,Y1,W,L);'
l'true'

Walker input string:,

Lster Input: Liste- output:

Figure 3.6 WALKWIN Screen While Processing Function Call Nodes

65

Now the user wants to go to the module Angle, the only program-defined

module called from the main module. He enters the string *Angle" in the WALKER

input area. The user then clicks on the "Goto" button. He is in the Angle module at

node 4, line 13. He scrolls the text window to display the Angle function. This is a

begin-end statement so the user goes left and joins nodes 4 and 5. The user traverses left

several times until he reaches node 15. The statements he traverses are assignment

statements. If the analyst desires, the effect of these assignments may be indicated by

modifying the reachability conditions or SPACER may evaluate the effects by symbolic

execution. In this case, the latter choice is made. (See Figure 3.7.)

From an examination of the code in the text subwindow, the user finds

he is at the beginning of a series of assignment statements. Each assignment statement

consists of a function call and the assignment of the result, so a pair of nodes represents

each line of code. The user joins these node together as pairs, consisting of the function

call and the assignment of the result. He joins nodes 15 and 16, nodes 17 and 18, nodes

19 and 20, nodes 21 and 22, nodes 23 and 24, nodes 25 and 26, nodes 27 and 28, and

nodes 29 and 30, traversing left between the join operations. The analyst could proceed

to further collapse these nodes further, reducing a linear code sequence to a single node,

but this is not necessary to this analysis.

The difficulty in processing "if" structures lies in retaining the location

in the code and the context of that location. In the Angle function, there are several "if"

cases, which create a comblike "if" structure, starting with node 31. Only one of these

cases will happen on each execution of Angle. All the cases gathi together at the end

66

I~n
lfVidth to fT / 23

)HalFLeth t LT / 2;)A/X s= x- Hslflidth;,
AY = Yr + HafLngt ;
)X :w XT + HalfWidth;
DY a. Yr - HalfLength;
BX i= DX;
BY a. AY
CX as AX;
CY DY;
SA a. Slope(XOYO,AXAY);
SA i arctan(SA);
SD i. Slope(XO,YO,DXDY);
SD a= arctan(SD);
SC a. Slope(XO,YO,CX,CY)i
SC t. arctan(SC);

Angle
t:4

)(13)' 1
'true'

) 1

ode: 5
:(14)' HalfWidth to VTI 2;'
)'true'
a|''

SJ 45
de: 5
(13)' Halflidth .To / 2;'
a 'true'

|8''

WlerWalker irput strig:,

Lister rput: Listar output:

Figure 3.7 WALKWIN Screen While Processing Function Angle

67

into an exit node. The traversal process now involves forming up the condition that

reaches that end. The user needs to keep track of each of these 'if" cases. Each case

has an immediate condition in the "if" statement and implied conditions it inherits by

being the "else" of the previous "if" statements. WALKER does some automatic

tracking of the conditions, but the user may need to intervene to simplify conditions. If

the conditions are too complex, it can cause problems in later processing. SPACER has

a limited amount of memory available, and the text has a limited allowable length.

To guide this simplification process, a sketch (such as Figure 3.8) may

be used. Later extensions of WALKWIN may include some sketch capabilities, but in

the prototype, external sketch facilities (e.g., a piece of paper) must be used. The sketch

includes the location of the parameters (XT, Y) and reference points calculated by

Angle from the parameters. These reference points (A, B, C, D on Figure 3.8) will be

referred to in terms of their X and Y coordinates (e.g., A appears as AX and AY). The

observer is in some area of the picture. There are more than nine cases because some

are exactly on the lines, some are between lines only, and some include both lines and

the area in between. The user keeps track of which cases he covers.

The user wants to systematically traverse the "if" structure. He will

traverse the left branch first, and then return to cover the right branch of each "if"

statement. The first "if" statement (node 31) contains the condition "(YO > BY) and

(XO > BX), so this area is in the upper right hand area, labeled Case 1. This case

does not include the lines, because it is strictly greater than. The user goes left from

node 31 and finds two nodes representing a function call and an assignment of the result.

68

Case 7a Case 7c

Case3 Case 7b Case I

A B

(XT, YT)

Case 6 Case 9 Case 4

C D

Case 2 Case 8b Case 5

Case 8c Case 8a

Figure 3.8 Sketch for getangle.p

These are node 32, which is the call to the "abs" function, and node 33, which is the

assignment to the variable Angle. The user notices the condition is no longer true. It

is now the inequality found in the "if" statement. The user joins nodes 32 and 33 to drop

out the pseudonode call to the abs function. The user goes left from here and is at the

69

exit node. (See Figure 3.9.) This is a pseudonode created when REACHER generated

the acfg. Each assignment statement could be the last statement in the procedure.

FALTER and SPACER expect one exit node. So if there isn't just one exit node,

WALKER adds an exit node and has everything that looks like an exit node goes there.

The program automatically has a single entry node, since there is only one pointer in

each header. The tools do not handle "goto" statements, so there is only one way into

each module. Future versions of the tools may be able to handle "goto" statements.

The last node visited prior to the exit node was node 33. To continue

the traversal, the user must jump back to the node corresponding to the "if" statement

where the left branch was taken. That was node 31. The user goes to node 31 using the

"Node" command. The user enters the number of the node he desires into the

"WALKER input" area, and clicks on the "Node" button. Here the user enters "31" and

returns to the "if" statement. The user goes right to node 34. The user goes left to the

body of the "if" statement at node 35. The condition is "anded" onto itself, so the user

simplifies the arc condition to the condition of the "if" statement only. He enters "((XO

< CX) and (YO < CY))" in the "Walker input" area, and clicks on the "Condition"

button.

This duplication is the result of coming out of a node and jumping to a

node rather than using an arc. The conditions are on the arcs rather than on the nodes.

When the user jumps out and returns to a node, there is no condition set. This condition

is a copy of the condition in the "if" statement there. The user notes that this covers

Case 2, the lower left hand area. The condition of Case 2 implies the negation of the

70

if moY 5- BY) and lXo >' EM) thenl
e Angle so abs(SD - SA)(else

eif (X0 < 00 and (Y0 -CY)) then
(lMAngle is .bs(SA- S)

if ((YO) A) and (XO < AM) then
Angle is abs(SC - SB)

else
IF (YO > DY) and CXO > DX)) then

(Angle is abs(SB - SC)(else

if XO i BX then
Angle is abs(SD + SB)

else
if XO < AX then
Angle to abs(SA + SO)

(a,,

Dde: 32
ss33) absISD - SAP
' ((YO • BY) and (XO • BX))

odes 33
t W(34'Angle so abs(SD - SA)'
a' ((YO > BY) and 0(0 > BX))

I
Dds: 999999

i ' ((YO > BY) and (O BX))
a'VALKR added exit node'

Walker input string:,

Lister Input: Lister output:

Figure 3.9 WALKWIN Screen While Processing If

71

conditions of Case 1 so the user doesn't need to add in the not of those conditions. The

user goes left to node 35. The user joins nodes 35 and 36, getting rid of the pseudo call

to the "abs" function. The user goes left and arrives at the exit node.

The user now must return to node 31 in order to traverse to the false

branch of node 34. He returns to node 31 using the "Node" button. He goes right from

node 31 to node 34 by clicking on the "Right" button. (See Figure 3.10.) The condition

set is the "not" of the condition in the "if" statement and itself. The user simplifies the

condition by eliminating the duplication. The user goes right to node 37. The user sees

that this is Case 3, where "YO > AY and XO < AX" and it doesn't include the line.

He enters this condition for node 37. By keeping track of the cases already covered, the

user can later express what the condition is in a certain area rather than what it is not.

The user wants to cover both branches from node 37. He goes left to

node 38. Again he simplifies the condition to "(YO > AY) and (XO < AX)". The

user joins nodes 38 and 39, which is the call to the abs function and the assignment of

the result. The user now goes left and is at the exit node again. He returns to node 37

to cover the right branch. The user simplifies the condition by setting it to "((YO >

AY) and (XO < AX))". The user goes right to node 40 and simplifies the condition.

Here the "if" condition is "YO > DY and XO > DX", so the user is in Case 4 of

Figure 3.8. The condition on node 40 contains duplication, so the user simplifies the

condition. The user adds in the two conditions to make one simpler condition.

Node 40 has both a left and right branch. The user goes left to node 41

and simplifies that condition. The user joins nodes 41 and 42, and goes left to the exit

72

If M0 >. BY) and EXO > BM) then
Angle irn abs(SD - SA)else

if ((XO < 0X0 and (YO < CY)) then
elAnsgle to abs(SA - SM)

if ((YO > AY) and (XO < AX)) then
Angle is abs(SC - SB)

else
if ((YO > DY) and (XO > DX)) then
Angle to abs(SB - SC)

else
if XO > X then
Angle to abs(SD + SB)

else

if XO -c AX then
Angle is abs(SA + SC)

:M2Mf ((T > bY) and (XO BX)) the

:1' ((YO • BY) and (XO BX))

true
ode: 31
* (32)if ((YO > BY) and (XO BX)) the

1 true'

r
ode: 34
s(35)'1if ((XO < CX) and (YO < CY)) the

:" not (((YO > BY) and (XO > BX)))'

Walke- input string:*

Ser Lister input: Lister ojtput:

Figure 3.10 WALKWIN Screen With Further Node Commands

73

node. The user returns to node 40 and simplifies the condition by setting it to true.

When the user goes right to node 43 WALKER automatically adds in the not of the

condition "XO > BX" from line 44. The user already eliminated out Cases 1 and 4 so

the condition includes "YO < = DY"; he adds that to th#. "if" condition. This adds in

the conditions that have accumulated so far, so "XO > BX and YO < = DY". This is

Case 5. The user goes left and joins nodes 44 and 45. He simplifies the condition and

goes left again to reach the exit node.

The user returns to node 43, the "if" statement for "XO > BX", to cover

the right branch off node 45. Node 43's condition is too complex, so the user simplifies

it to "YO > = DY and YO < = BY". He goes left to node 45 and then right to node

46, putting himself in Case 6. This is the condition where "XO < AX" and Cases 2 and

3 have been covered. So he also has "YO < = AY and YO > = CY" as part of the

condition and he changes the condition to reflect the more restrictive of the two.

From node 46 there is a left branch and a right branch. The user goes

left and joins nodes 47 and 48. The user goes left and is at the exit node. The user

returns to node 46 and this time goes right to node 49. He has the condition where "YO

> = AY" so it is the case of the line AB in figure 3.4 and everything above it. Since

the user already traversed Cases 1 and 3, he is in Case 7 of the diagram. However, the

program divides Case 7 into several subcases. So the user can set some limits on XO

by setting the context for YO here. It is not pertinent to worry about excluding the parts

previously done. Another statement on AX will exclude more areas later. The user sets

the condition to true. All he worries about is setting the YO condition on the next node.

74

The user goes left to node 50. Now he has the XO set up so if "XO = AX" and the "if"

statement is true he is on the line AC above line AB, which is Case 7a in the diagram.

The user adds the comment "XO is set up". The user goes left and then joins nodes 51

and 52. The user goes left and is at the exit node.

The user returns to node 50 to cover the right branch. He handled the

body of the first double "if" so he goes back to the "XO = AX." condition. He changes

the condition to "YO > = AY". The user goes right to node 53. He knows he's not

on the line and "XO < BX" is the condition of the "if" statement. He wants to simplify

this down to "XO > AX", because he handled the pa'ts where XO < AX and where

XO = AX. He knows XO < DX so he is not on the line BD, but is between the lines

in Case 7b. He changes the condition to "(XO > AX) and (YO > = AY)". From node

53, the user goes left to node 54 where there is a call to the "abs" function. Node 55

is also a call to the "abs" function" and node 56 assigns the result of "Pi - abs(SA) -

abs(SB)" to the variable. There are two pseudonodes, so he does a three way join. The

user joins nodes 55 and 56, and then joins nodes 54 and 56. This order of joining keeps

the links connected and avoids the loss of nodes. The user goes left to the exit node.

(See Figure 3.11.)

The user returns to node 53 to traverse the right branch from the

condition "XO < BX" in the "if" statement. He simplifies the condition of node 53

again. The user now goes right to node 57, and is under the else condition to reach Case

7c. The user has dealt with the line AC in Figure 3.8 and the area between the lines AC

and BD and has to deal with the portion of line BD above line AB. He does some

75

else
if (YO ~-AY) then

I f 0(00 AX) then
Angle sm P1/2 - mbx(SB)

i f 0(0 BX) then
Angle to PI - abs(SA)-

abx(SB)

eleAngle to P1/2 - absCSA)

If (YO <= CY) then
if CXC a DX) then

Angle to P1/2 - abs(SC)
clse If (XC 00 then

Angle to Pi - abs(SD)-
abs (SC)

y F

odiet 55
: (55)' abs (SB)
'true'

j 55 56
ode: 56
a(55)'Angle t. Pi abs(SA) - abs(SB)l

a true'

J 54 56
S 56

a(55)'Angle in Pi abs(SA) - abs(SB)'
a true'

r Ikke I
Sas Walker input string:.

Lis erLister input: Lister output:

FIgure 3.11 WALKWIN Screen Showing Multiple Join

76

simplification and sets the condition to "XO = BX and YO > = AY". The user goes

left and joins nodes 57 and 58. The user goes left to the exit node.

He returns to node 49 to traverse the right branch from the "if" statement

with "YO > = AY" as the condition. The user sets the condition to true and goes right

to node 59, so "YO < = CY". The user is now in Case 8. Case 8 also has several

subcases. If "YO < = CY" then it is not > = AY so the user sets the condition to true.

The user then goes left to the condition "XO -DX" at node 60. This is the case where

the observer is right on the line BD in Figure 3.8 and is in Case 8a. There is a left and

right branch from node 60. The user goes left from there. Then he goes left again and

joins nodes 61 and 62. He goes left again and reaches the exit node. The user goes

back to the "if' statement at line 60 and sets the condition to "YO < = CY. The user

goes right from node 60 to node 63 where "XO > CX". He knows here that in addition

to "XO > CX", that "YO < = CY" and "XO < DX". He has handled the line BD in

figure 3.8 and is in the middle at Case 8b. The user simplifies the condition to "YO

< = CY and XO < DX".

Node 63 has a left and right branch. The user goes left to node 64 and

finds another triple node assignment. He joins nodes 65 and 66, and then joins nodes

64 and 66. The user goes left to the exit node. The user returns to the XO > CX "if"

statement at node 63 and simplifies the condition so "YO < = CY and XO < DX".

The user goes right to node 67. He is down in the assignment statement, so he joins

nodes 67 and 68. The user goes left and is at the exit node.

77

The user has to cover the else part of the "YO <= CY" condition,

which is node 59. He goes to node 59, where the condition is "YO <- CY". The user

has done everything except the internal square, Case 9. So he knows he is going to get

the not of the condition and considers the previously covered cases. He changes the

condition to "YO < AY and XO > = AX and XO < = BX". The user sets the upper

limit on YO and the two limits on X. This case includes the side lines but not the top

and bottom lines. The user goes right to node 69 and is in the angle assignment. He

goes left to the exit node and completes the traversal of the Angle module.

There is one module left to traverse, the Slope function. The user goes

to the Slope function using the "Goto" button. He is at node 1, and joins nodes 1 and

2. This completes the traversal of "getangle.p".

d. Saving work

Once the user finishes traversing the graph, he needs to save his work.

He enters the filename "walkerout" in the WALKER input area and selects the "Walker

Menu" with the right mouse button. He highlights the "Save" selection, and releases the

mouse button. (See Figure 3.12.) WALKER writes the file to the disk. Appendix G

contains a copy of "walker-out". This does not exit the user from WALKER. The user

now selects the "Quit" choice from the "Walker Menu". This ends the interaction with

WALKER and renders the buttons and menu options other than "Run" inoperative.

WALKWIN sends a clear command to the tty subwindow to clear the screen.

78

8real function Slope OC1,Y1,X2,Y2treal):
Le ilpe :z CY2 - YD) / CX2 -XD);

end;
begin

Hulf~idtth irn VT 21
Half egh to LT /21
AX a. XI - HalfWidth;
AY :m YT +. HalfLength;
DX :a Xr + HalfWidth;
DY i. YT - Halftength;
DX IN DX;
BY is AY;
C to AX;

CY in DY;

J 34 36
odes 56

a(55)'Angle to Pi abs(SA) - bz(SB)'
'true'

1Slope

ode: 2
a(10), Slp'oM Y X

* 'true'

s a true'o

Walker input string: malker..ut

serLister input: Lister utpuat:

Figure 3.12 WALKWIN Screen Showing Save

79

e. Running LISTER

WALKWIN uses the button labeled LISTER in conjunction with the

other two text items in the panel to get the annotated source listing. The user enters the

input filename in the "Lister input" text item, in this case the filename is "reacherout'.

To activate this text item, he moves the pointer to the rectangle containing the text item,

and clicks the left mouse button. The movement of the caret to the end of the label

signals that it is active. It also blinks. The user activates the "Lister output* text item

and enters the filename desired. He chooses "getangle.list" as the name for the output.

He moves the pointer to the "Lister" button and clicks the left mouse button. (See

Figure 3.13.) The tty subwindow displays the output and provides feedback that LISTER

saved the file. Appendix H contains a copy of "getangle.list*.

This concludes the portion of failure region analysis done via

WALKWIN. The user closes the frame to an icon or exits from the frame using

standard SunView menu options.

4. FALTWIN

a. Initiating FALTWIN

The user displays the FALTER interface by clicking on the "Falter"

button in the VIEWWIN panel subwindow. FALTWIN can use the same filename used

by REACHER, or another text file, or no file at all. Normally FALTWIN uses the same

Pascal file used by WALKWIN, so the filename remains in the text entry area.

FALTWIN displays the Pascal file in its text subwindow (just like WALKWIN).

80

rogrm getan Ic (nUtopti
comat P, 3.141M92656
var ang,XD,YO,X,Y,, Lreal;

function
Angle CX,YO,XT,YT, VT, MT real) i real;
var SA,S8, SC, D, AXAY, BX,BY, 04 CY,
MWC,DY: real;

Half~idth, HalfLength: real;

function Slope LXI,Yi,X(2,Y2: real):
real

Ilope is MY YD (X2 -XD);

end;
fbegin

Half~idth to VT 2;

I braXU

Mao Walker input string:

Lisr hter input: r~acw..out Lister output: gotangle.14%t

FlIgure 3.13 WALKWIN Screen Showing Call To LISTER

81

FALTWIN has more panel items than WALKWIN. They are for the

additional commands used with FALTER. (See Figure 3.14.)

b. Traversing the grph and setting the fault

The directory contains the files reacherout and walkerout. The user

must enter a filename in the "Falter input" text item. He indicates the output saved from

WALKER named "walker-out" in the "Falter input" area, and invokes FALTER by

selecting the "Run" choice from the "Falter Menu" via the right mouse button. FALTER

loads the file and places the user at the "readln" statement in the main module of the

"getangle.p" program. The graph representation of the main module is in the canvas

subwindow.

The prompt for FALTER is different from WALKER. It has some

additional fields. The "@" prompt is the text of the line under consideration. The "1"

is the local condition. The "e" prompt shows the error condition (initially 'false') and

the "c" prompt shows any comments entered by the user.

Since WALKER has set up all the reachability conditions, the user uses

FALTER to record what the fault effect will be and the conditions under which that fault

will occur. The user will normally record a comment about the fault. FALTER doesn't

really do any analysis. It is a recording mechanism, allowing the user to traverse the

acfg and be sure he is where he wants to be. The process requires the user to debug the

program and find the problem prior to using the tools. Now he defines the immediate

effects of the bug, i.e., the effects on the next state. FALTER represents this effect by

which variable values are contaminated. SPACER doesn't need to know about the bad

82

abs(5

else

else
end; Angle P1/2

begin
readlnOCO YO,XT,YT,W,L);

writ n~~sered ngleis ,ang);
end.

IlbraX falter walker..out
falters read block getan le
falters reacher file walker..out loads cor
rectly
8:0 readlnOO,YO,XCY,YT,V,L)'

1'False'

Falter input string:.

Figure 3.14 FALTWIN Screen Showing FALTER Initialization

83

value, only that it is contaminated. SPACER assumes that if the value is contaminated

and the failure generation condition occurs that the value is always wrong. The user

represents this in the error generation condition and identifies which variables have bad

values.

The user goes to the Angle module using the "Falter input area" to enter

the text "Angle" and clicking on the "Goto" button. The fault in "getangle.p" is in case

4. The SC in the computation "abs(SB - SC)" under the condition "YO > DY and XO

> DX" is wrong. It should calculate the angle between points B and D, but is using

points B and C instead. In certain cases the angle will be less than what it should be.

This is a naturally occurring fault.

The user wants to go to the node in Case 4 where the fault occurs. He

traverses left through the graph. If the user knew the node number automatically, he

wouldn't have to go through the traversal. Note that FALTER doesn't make any changes

until the user tells it to add a fault. The user can traverse at will with no changes made,

unlike WALKER which modifies the structure. WALKER can go left and right without

changing, but the default is to annotate the control flow graph as it sets up reachability

conditions.

The user goes left from the nodes until he reaches the first "if" statement

where "YO > BY and XO > BX". He goes right from the first "if" statement and right

from the second "if" statement where "XO < CX and YO < CY". He goes right from

the third "if" statement where "YO > CY and XO < AX" and goes left from the fourth

"if" statement where "YO > DY and XO > DX". This is Case 4 of Figure 3.8. He

84

has found the bug and can add a fault. To add a fault the user clicks on the "Add Fault"

button. FALTER identifies this fault as "Angle 1 type 13" with a "#" prompt. (See

Figure 3.15.) The type is a user defined field to allow several different classes of faults.

It can be used to draw statistics about the failure region analysis.

The "Viol" is where in the specification the violation occurs. This is

why the code is wrong. This bug violated "observation condition 1" of the specification

of the program. The user sets the violation by entering the text into the "Falter input"

area and clicking on the "Violation" button. The "i" prompt is for the implication of the

fault. The implication of this mis-assignment is the variable given a bad value, in this

case "Angle." The user sets the implication by entering "Angle" in the text item area

and clicking on the "Implication" button.

The error generation condition is currently false. The user sets the error

condition based on the fact that the programmer used SC when he meant to use SD.

When will this error matter? When SC and SD have different values. When will that not

happen? When SC and SC have the same value, which would be when observing

something with a zero width. It is possible that the item under observation may have a

zero width. For all the user knows that is legal. Maybe there is other code before this

that would prevent it but the user doesn't know that. The variable "W" is the value of

width so when "W < > 0" the program will generate an error. The user enters the text

in the "Walker input string" area and clicks on the "Error" button to set the error. (See

Figure 3.16.)

85

If ((YO BY) and (XO > EM) then
Angle i. abs(SD - SA)Cel e
if (XO < CO and CYO C) then

e Angle to abs(SA - SD)
C else

if ((YO > AY) and (X0 < AX)) then
elseAngle i. abs(SC - SB)

if (YO > DY) and (XO > DX)) then
Angle i nbs(SB - SC)

else
* if XO > BX then

e Angle i. abs(SD + SB)C else

iF XO < AX then
Angle i. abs(SA + SC)

Y false'

C >1

:'Angle i. abs(SB - SO)'
Isz ((YO > DY) and (XO > DX)) and ((YO
DY) and 0(0 > DX))'
a 'false'

asAnglei type 13 viol:

:'Angle in abs(SB - SC)'
I1' (YO > DY) and (OO DX)) and ((YO >
DY) and 0(0 > DX))'
e' false'

[d aul a rror Jl ~, o.I!St ,o-j t Lf

Falter input strings.

Figure 3.15 FALTWIN Screen Showing Preparation of Fault Annotation

86

if moiTo BY) and CHO). ED) thien

elAngle i. abs(SD - SA)

I f ((0 < 00) and (YO < CY)) then

eeAngle ia abs (SA - SD)

if (CYO 3- AY) and (XO <AM) then

Angle is. buCSC - SO)
elsme
if C(O DY)X ahnd X)te
Angle is ghm(SB + SC)

if XO <AX then
* Angle to. bs(SA + SC)

#3 nglei type 13 violaobs cond I
is 'nlet
:'Angle to sbx(SB - SC)'

* 1:' 1 MO > DY) and 0X0 > DXM and M(O P
DY) and (0 DX))
: ' false,
:0'

*~ V> a

:Anglel, type 13 violsobs cond I,
:s Angle'
:Angle t. abs(SB - SC)'

Ma (O > DY) and 0(0 > DX)) and (CYO>
D)and 0(0 D. DX))P

OWV <> 0'

au no a e rror ror Loc. C f

Falter input strings0

Figure 3.16 FALTW1N Screen Showing Fault Annotation

87

The user can annotate the acfg and record a comment about the bug. He

enters "mis-subqtitution of SC for SD in this assignment" in the text input area, and

clicks on the "Annotation" button.

c. Saving work

In setting up these fields, FALTER sets some of them directly and some

of them in temporary variables. The user wants to have a consistent set saved to internal

memory to have a complete record of the fault. The user can save the fault description

in two ways. (See Figure 3.17.) It can be saved in Lisp format for use by SPACER.

The user enters the filename in the "Falter input" text item, and selects "Save" from the

"Falter Menu" button via the right mouse button. This sets the current error condition

to match the temporary values displayed.

The file also can be saved in acfg format for use with FALTER. To

save a file in acfg format, the user must include a "-" in front of the filename he enters

in the "Falter input" area. This method saves the acfg so the user can read it back into

FALTER and work with it. It allows the user to have several fault descriptions for the

same acfg. The user could compare statistics for the faults in the file if there are other

analysis tools to read acfg format statistics on failures in control flow graphs. Currently

these types of tools don't exist.

The user saves the results as a SPACER-usable file with the name

"spacer_in.l". The user selects "Quit" from the Falter menu to end the interactive

session with FALTER. The "spacerin.l" file is much larger than the "getangle.p"

program. Appendix I contains a copy of "spacerin.l" code. The "getangle.p" code is

88

If (EYO)o BY; ana EX0) D then
Angle is abs(SD - SA)

eli.

IF M(O -c 00 and (YO -c CY)) then

esAnile to abs(SA -SD

elseml:aa(S-
B

IF MCO >AY) and NXO >AX)) then
Angle soambsCSC - SB)

else
IF ((O > DY) ahndXO.D))teAngle in abs(S - S)

else
if XO < AX then
Angle to abs(SA + SB)

else
* ifX((O A~thend X)te

Angle am• abs (SA- SC)

wspacer-. n.1
sAnglel type 13 violobu cond 1
i Angle'
:AAngle to ab(SB - S+)'
1:'1((YO > DY) and O > DX)) and (CYO :P
DY) and (XO > DX))
IV <> 0'
11-Falter_.out

sAnglel type 13 violsobs cond I
i: 'Angle'
I'Angle is abI(SB - SC)'
I' (CYO 3, DY) and CXO > DX)) and ((YO
DY) and (XO > DX))'

ea'V <> 0'

....4, *. .. *

Fal-tlterou MTTn-oel tp 13 tionjb cn

Falter input strings.

Figure 3.17 FALTWIN Screen Showing Save

89

74 lines, and "spacerin.l" is 541 lines. (Reminder: Appendix E contains a copy of the

source code for "getangle.p".)

5. SPACEWIN

The last step in failure region analysis is SPACER. SPACEWIN allows the

user to invoke LISP, and then run SPACER using the output from FALTER. More

sophistication in SPACEWIN is an area for future development.

The user copies the file "spacerin.l" to "temp.1" since SPACER automatically

loads "temp.l" during processing. A copy of "getangle.p" is available to SPACER as

"temp.p" in the directory. SPACER loads the files then prompts the user to select the

fault to be generated into a failure region. The user then is given the option of setting

the level of information display and other SPACER options. When finished, the user

types "go" and SPACER will emulate program execution to generate the failure region.

90

IV. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

A well-organized user interface contributes to the efficiency of the software tester.

Alleviating the requirements to recall commands and providing feedback is essential.

The use of graphics and a windowing environment is becoming more commonplace in

software.

The interface can provide a logical organization of the information needed by and

provided to the tester. The ability to move from code display to a graphical

representation of control flow is useful.

A. CONCLUSIONS

This thesis has been an in-depth examination of interface design, testing tools, and

the interaction between the two. It also is the first development of a graphical user

interface for the failure region analysis tools. VIEWER satisfies many of the design

principles for interfaces. It presents the results and outputs of the testing tools with

consistency and coordination. It is similar to other tools in SunView, so it retains a feel

that is natural to SunView users. There is a structure to the interface, while maintaining

a degree of flexibility for the tester.

The complexity and richness of the SunView language allowed rapid construction

of a prototype. However, further refinements and enhancements are necessary.

91

B. LESSONS LEARNED

Tools can represent information in a screen-oriented way. The interface can key

the views around features of information known to be significant in the testing process.

The use of multiple views enhances the scope of the tester's view of the system and

allows the tester to detect probl,. ms in the analysis. The use of screen orientation reduces

the load on the tester's memory.

User interface design should be a part of the tool development process. If the

process is well understood, the user interface design may be highly integrated into the

development. If the process is poorly understood, a series of prototypes may be

appropriate.

Testing is a relatively new area of research. The tools used in testing are changing

rapidly. They provide information to the user. How is that information processed? By

the user. How would they like to see it represented? The interface may show graphs

or the text of files. A simple prototype that has flexibility allows further development

and improvement as the tocx. develops. Useful information can be obscured by forcing

it into an interface that doesn't consider fully the ramifications of the information on the

process as a whole, the type of information being presented, the target audience, etc.

The interface designer shouldn't hesitate to use a textual representation of data until a

better understanding of the properties of the data and desired qualities are known. Views

must be focused around the analysis-related features, or the interface will be more

distracting than helpful.

92

The designer should consider the use of a toolkit such as SunView when designing

a graphical user interface. The toolkit provides a high level language to manipulate

objects used in the creation of the interface. This enables the designer to maintain a level

of abstraction during the design process. The designer has to be aware of the user's

needs and desires. They should work closely with the user to incorporate these needs

and desires into the interface. The interface will then increase productivity instead of

increasing frustration in the user.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

Each user has their own idea of a "good" interface. To allow for variations in

taste, the user could customize the interface with regard to size and placement. Some

may feel the text requires a larger display area, while others may not want to use

scrollbars, but see the entire acfg representation at once. An initialization file (.viewer)

could provide unique default settings for the VIEWER interface to accommodate a

variety of users. It would allow tiling of the windows and save the setup to a file so

each user could adjust the subwindows to suit their individual preferences.

We designed this interface on a Sun Workstation with a monochrome display, so

color was not a consideration. If color is available, the use of color in the design of user

interfaces is a direction of further research. Which colors work best together as

background and foreground, text representation, and window colors are all possibilities

for future consideration. This use of color could include the interface outline,

93

backgrounds and the representation of the acfg. Nodes could be color coded based on

their type (begin-end, assignment, etc.).

Further refinement of the algorithms that construct the graphical representation of

the control flow graph are necessary. Representing complex graphs in the acfg window

is a complex programming problem worthy of further research and development.

The acfg provides another area of research. In the prototype interface, the user can

display the graph, but it is non-interactive. An enhancement allowing traversal of the

graph through use of the mouse would be useful vice the button facility provided in the

prototype. While the buttons are useful, and in some ways preferable to the command

line, a user could move through an acfg by pointing to a location and clicking on it.

Error handling As an important principle in the design of user interfaces. The

prototype has some simple error handling procedures. There is much room for

improvement here. The program could, for example, check for the existence of the

filename entered before running any program.

The interface does not provide on-line help. Help only exists within the tools.

Further versions of the interface could provide more detailed help facilities, an on-line

manual, etc.

Levels of interface support are another possible area of continued research. The

program could detect whether the user is a beginner, intermediate, or expert and provide

different interfaces for each level. The beginner level would provide detailed help

functions, and prompt the user with detailed explanations of what the program expects

at various junctures. Artificial intelligence techniques have applications here.

94

Other languages also could be a source for further research. SunView is a

powerful toolkit, but is not the only one available for Sun Workstations. An option

provided by Sun is SunNeWS (Sun Network extensible Window Systems). It uses a

version of PostScript as the programming language. SunNeWS can support graphical

interfaces to remote programs. There is also the X Window System that originated at

MIT. There are similarities between SunView and X Windows, but X Windows also can

provide an interface to programs on remote machines like SunNeWS. (Beer, p. 64)

Follow-on tools to use the results from VIEWER are an area of further research

possibilities. These tools could analyze the relationships between failure regions within

a single program or in several programs. This analysis may provide information on the

clustering of failure regions within software. Bolchoz, 1990 contains several additional

ideas for further research in the area of failure regions analysis.

95

APPENDIX A

This appendix contains the text from an interactive session with the EFFIGY testing tool.
Italicized text indicates comments.

P effigy Invoke the EFFIGY system.

EFFIGY READY
• edit absolute effigy;

Invoke the CS fil editor and
type-n a new file called

-absolute effigy

NEW FILE:
o input
P absolute: proc (x,y);
P dcl (x,y) integer;
P ifx<Otheny =-x
P. else y x;
o end;
P. (end of input signified by null line.)
P file Savefle pemanently &

go back to EFFIGY.

P input absolute effigy;
Have EFFIGY read input from

that file.
1: ABSOLUTE: PROC(X,Y);
2: DCL (X,Y) INTEGER;

Statements are numbered by EFFIGY
3: IF X<O THEN Y = -X
4: ELSE Y = X;
5: END;

Last line offile -back to
terminal input.

i dcl z integer;
Declare a vaiable in MAN.

• call absolute (55,z); display z;
Try a numeric execution.

55 Result of display statement.
• call absolute (-66,z); display z;

66
• in absolute; turn all on all;

96

All tracing on in proc. "absolute'.
b in main; Set back to MAN.
o call absolute ("a",z);

Try a symbolic input "a.
1: ABSOLUTE: PROC (X,Y);

Each statement execution is traced

by printing it.

2: DCL (X,Y) INTEGER;
3: IFX < O THEN Y -X

((A' > -1)) Evaluated result of X< O-v(B).
(A <-1 or A <0O)

TYPE GO TRUE OR GO FALSE

Unresolved (forking) IF-User option.
• before 5; Stop before executing statement 5.
i save; Save the current execution state.

STATE 1 SAVED
EFFIGY calls this state 1.

- go true; Follow case where A<0.
((A-' > -1)) Current pc.
TRUE BRANCH
Y=-A Result of assignment to Y.

STOPPED BETWEEN 3 AND 5
Stopped "before 5".

0 display variables, pc;

All local values and the pc.
IN ABSOLUTE

X=A
Y=-A
((A -' > -1)) Current pc.

- restore 1; Return to execution state 1,
and try else path.

STATE 1 RESTORED. IN ABSOLUTE
• go false;

((A' >-I)) v(X<O).
FALSE BRANCH

4: ELSEY =X;
YfA New value of Y.

STOPPED BETWEEN 4 AND 5
Before 5.

o display variables, pc;

IN ABSOLUTE
X=A
Y=A
((Z-'< 0))

0 xgo; Resume execution and delete breakpoint.
BACK FROM ABSOLUTE TO MAIN

97

idisplay z;
A

i- in main;
e- erase pc; Reset pc to true.

Scall absolute("a" - "b", z); go true;
TYPE GO TRUE OR GO FALSE

Go £rue above anticipates question.

" display z;
-A+B

" edit absolute effigy;
Invokce editor to change absolute.

'next EMt comtmandi to look at line I offile.

Schange /absolutelnewabsl
Otange proc name.

.bottom Go to end offile.
iup 1 Well not quite.

P- input assert(y eq abs(x));
Insert a correctness speafl cation.

o file newabs File away as newabs effigy.
Go back to EFFIGY.

Sinput newabs effigy;
Enter into EFFIGY

1: NEWABS: PROC(X,Y);
2: DCL (X,Y) INTEGER;
3: IF X<O THEN Y =-X
4: ELSE Y =X;
5: ASSERT(Y EQ ABS (X));

6: END;New statemtent.

Serase pc;
P. call newabs("a",z); go true;

TYPE GO TRUE OR GO FALSE
Response was anticpated on

previous line.

((abs(A)+A =0)) ::TRUE
Result of executing assert (statement 5)

Of Jbrm I .r where...
I i evaluated assertion and

r is result of pc D) 1.

edisplay z, pc;
-A Value of z
((A -1> -1)) nd pc.
'erase pc;
.call newabs("a",z); go false;
TYPE GO TRUE OR GO FALSE

Try only other case.

98

((abs(A)-A =0)) ::TRUE
That also gets proved.
Have correctness proof-both paths

correct.

A
((A-1<O))

P'erase pc;

inpu tims efigy;Now read in procedure times.

1: TIMES:PROC(X,Y,Z);
2: DCL (X,Y,Z) INTEGER;
3 : Z=0;
4: IF X<O THEN
4: DO;
5: CALL ABSOLUTE(X,X);

Ti1mes calls absolute.

6: Y=-Y;
7: END;
8: L:
8: IF X>O THEN

It multiplies by looping add.

8: DO;
9: X=X-1;
10: Z=Z+Y;
11: GO TO L;
12: END;
13: END;

m- call times (3,5,z); display z;
Try some numbers.

15
call times(-3,5,z); display z;
-15
call times(-34,"b",z); display z;

A mixed case-deerminate control flow.

..34*B
o- in times; turn all on 4 5 6 8 9 10;
wbefore 13; in main;
w call times("a", "b", z);

The completely symbolic case.
4: IFX <O0THEN DO;

((A - > -1))
TYPE GO TRUE OR GO FALSE
esave;
STATE 2 SAVED

99

P. go true;
((A-' >-1))
TRUE BRANCH

5: CALL ABSOLUTE(X,X);
Executed a resolved IF in absolute.
Knows A <-1.

6: Y =-Y;
Y=-B

8: L: IFX > 0OTHEN DO;
((A -' > -1))
TRUE BRANCH

Another resolved IF.
A<:5-1 so -A>O.

9: X= X -1;
X=A-1

10: Z= Z+ Y;
Z=-B

8: L: IFX > 0OTHEN DO;
((A -1 > -2))
TYPE GO TRUE OR GO FALSE

P. go true;
Loop around.

((A -n > -2))
TRUE BRANCH

9:X=X- 1;
X=-A-2

10: Z=Z+ Y;
Z=-2*B

8: L: IF X > 0OTHEN DO;
((Z -1 > -3))
TYPE GO TRUE OR GO FALSE

o go false; Now go out to end of proc.
((A--, > -3))
FALSE BRANCH
STOPPED BETWEEN 8 AND 13

Breakpoint at end of proc.
P- display variables, pc;

IN TIMES
X=-A-2
Y=-B
Z=-2*B
((A = -2)) Path choices deteimine A= -2.
'restore 2;
STATE 2 RESTORED. IN TIMES

100

m go false; Try another case.
((A - >-1))
FALSE BRANCH

8: L: IF X > 0 THEN DO;
((A-1 < 1))
TYPE GO TRUE OR GO FALSE

b assume("a" > 4);
Ad this assumption to the pc.

P go; Now retry the IF wth new pc.
((A- < 1))
TRUE BRANCH New pc resolves it.

9:X-X-1;
X=A-2

10: Z Z + Y;
Z=2*B

8: L: IF X > 0 THEN DO;
((A-' < 3))
TRUE BRANCH

9:X=X-1;
X=A-3

10: Z = Z + Y;
Z=3*B

8: L: IFX > 0 THEN DO;
((A-'- < 4))
TRUE BRANCH

9:X=X-1;
X=A-4

10: Z = Z + Y;
Z=4*B

8: L: IF X > 0 THEN DO;
((A-'- < 5))
TRUE BRANCH

9:X=X-1;
X=A-5

10: Z = Z + Y;
Z=5*B

8: L: IFX > 0 THEN DO;
((A-' < 6))
TYPE GO TRUE OR GO FALSE

Unresolved when X gets to A-5.
go false; Leave loop.

((A -< 10))
FALSE BRANCH
STOPPED BETWEEN 8 AND 13

101

P. display variables, pc;
IN TIMES
X=A-5
Y=B
Z=5*B
((A =5))

D. restore 2; Co back ad ny ndwe case.

STATE 2 RESTORED. IN TIMES
P.assume ("a" eq *b" & "b" eq 2);

Indirecdy asswone A us 2.
b. go; Does that assiune resolve the if?

((A -1 > -1))
FALSE BRANCH Yes it does.

8: L: IFX > 0OTHEN DO;
((A -1< 1))
TRUE BRANCH Mhi one resolved too.

9: X= X -1;
X=A-1

10: Z= Z+ Y;
Z=B

8: L: IFX > 0OTHEN DO;
((A -' < 2))
TRUE BRANCH This one resolved too.

9: X= X -1;
X=A-2

10: Z= Z+ Y;
Z=2*B

8: L: IFX > 0OTHEN DO;
((A -' < 3))
FALSE BRANCH
STOPPED BETWEEN 8 AND 13

.display variables, pc;
IN TIMES
X=A-2
Y=B
Z=2*B Result stil in rymbolic term.
((Z-B =O&B =2))

P. assert(a eq 4);
Does it know Z is really 4.

((B = 2)) ::TRUE
Yes.

1-go;Go on out of times.

IN MAIN Response to previous null line.
Snext In editor.

102

P.input assume(x eq "0O" & y eq "yO");
Insert correctness specifications.

b.bottom
P. up 1
P.' input assert (z eq "0O" * Ye
P. fie Replace original procedure

and go back to EFFIGY

P. erse tmes;Can 't have two times routines.

b.erase pc;
b.input times effigy;

Input fromt timsfile.

1: TIMEES:PROC(X,Y,Z);
2: ASSUME(X EQ XO" & YEQYO M);

Used to name input values.
3: DCL (X,Y,Z) INTEGER;
4: Z=O;
5: IF X<O THEN
5: DO;
6: CALL ABSOLUTE(X,X);
7: Y=-Y;
8: END;
9: L:
9: IF X>O THEN
9: DO;
10: X=X-1;
11: Z=Z+Y;
12: GO TO L;
13: END;
14: ASSERT(Z EQ WX" "W)

Relate input values to output.
15: END;

e in times; turn all on 5 9 14; Slcieytae

P. in main;
ioassume("a">4 & "a"<5);

No integer between 4 and 5.
CONTRADICTING ASSUMPTION. IGNORED.

u'assume("a">4 & W"<7);
How about A is 5 or 6.

b-call times("a", "b",z);
5: IFX <O0THEN DO;

((A -1 > -1))
FAILSE BRANCH

For S and 6 X> 0.

103

9: L: IFX > O THEN DO;
((A-' < 1))
TRUE BRANCH

For 5 and 6 loop some too.
9: L: IF X > O THEN DO;

((A"- < 2))
TRUE BRANCH
9: L: IFX > O THEN DO;
((A-' < 3))
TRUE BRANCH
9: L: IFX > O THEN DO;
((A'< 4))
TRUE BRANCH
9: L: IFX > O THEN DO;

((A-'1 < 5))
TRUE BRANCH
9: L: IF X > O THEN DO;

((A-'I < 6))
TYPE GO TRUE OR GO FALSE

Now must decide 5 or 6.
GO TRUE Pick 6.
((A - <6))
TRUE BRANCH
9: L: IFX > O THEN DO;

((A-n <7))
FALSE BRANCH Known not > 6.
14: ASSERT(Z EQ XO * YO);

((6*B-O*YO=O)):: TRUE
Results check by asser-O.K.

b. display pc;
What is the pc ?

((A=6 & A-O=O & B-o=o))
Relates the symbolic inputs to the
names given to inputs by assume

in the procedure.

b display variables;
KAN has variables and values too.

IN MAIN
ABSOLUTE=PROC

Value 'PROC" means it is a procedure.
Z=6*B
NEWABS = PROC
TIMES = PROC
• quit Leave EFFIGY system.

104

APPENDIX B

This appendix contai, . the script from an interactive session with the ASSET testing tool.

Script started on Wed Jun 13 12:08:55 1990
% asset

I ASSET was developed with the support of the National Science Foundation
I under grant CCR-8501614 and the Office of Naval Research under contract

N00014-85-K-414.

Welcome to ASSET. For help type "help."

Enter relative pathname of initial default directory.

> > >: begin
Enter name of subject procedure file.
> >: abel.p
Separate Compilation? (Y/N) [N]
>>: n
Enter the name of the procedure to be instrumented.
If you would like to be prompted with the names of
the procedures in the subject program, just hit carriage return.

= => Should driver
be instrumented for testing? (Y/N)
>>: n
= = > Should PositionUnit
be instrumented for testing? (Y/N)
>>:y

>>>: sel

No criterion has been selected yet.

105

SELECT A CRITERION

A. All-defs
B. All-c-uses
C. All-p-uses
D. All-c-uses/some-p-uses
E. All-p-uses/some-c-uses
F. All-uses
G. All-du-paths
H. All-edges

Enter letter representing the selected criterion
>>: c
Criterion is All-p-uses.

* > >: find

* > >: compile
Compilation begins ...
Done, and successful.

>>>: run
Command line arguments? (Y/N) [Y]
>>: n

Executing modified subject program ...

How many units?l
How many elements in unit l?2
What x y position for unit 1? (no commas!)0.0 0.0
How many elements/row in unit 1
What row column separation for unit 1? (no commas!)l.0 1.0
What Endurance for unit 1 element 1M1
What Endurance for unit 1 element 2?1
Position[1, 1]=(0.0000, 0.5000)
Position[1, 2]=(0.0000, -0.5000)
Enter another data set?y
How many units?l
How many elements in unit 14
What x y position for unit 1? (no commas!)0.0 0.0
How many elements/row in unit 172
What row column separation for unit 1? (no commas!)1.0 1.0

106

What Endurance for unit 1 element 1?-1
What Endurance for unit 1 element 2?1
What Endurance for unit 1 element 3?-1
What Endurance for unit 1 element 4?1
Position[1, 1]=(0.0000, 0.5000)
Position[1, 2]=(-0.5000, 0.5000)
Position[1, 3]=(0.0000, 0.0000)
Position[1, 4]=(0.5000, 0.5000)
Enter another data set?y
How many units?l
How many elements in unit 1?4
What x y position for unit 1? (no commas!)0.0 0.0
How many elements/row in unit 172
What row column separation for unit 1? (no commas!)l.0 1.0
What Endurance for unit 1 element 1?1
What Endurance for unit 1 element 2?1
What Endurance for unit 1 element 3?0
What Endurance for unit 1 element 4?1
Position[1, 1]=(-0.5000, 0.5000)
Position[1, 2]=(0.5000, 0.5000)
Position[1, 3]=(0.0000, 0.0000)
Position[1, 4]=(-0.5000, -0.5000)
Enter another data set?n
Do you want to run the subject program
on some additional test data? (Y/N) [N]
>>:n

> > >: d^Hc\Hhc^Heh^Hck
ALL-P-USES
Still need to exercise all of the following of def-clear paths:

with respect to from to
Elements 1 (2, 3)
Elements 1 (14, 15)
Elements 1 (15, 29)
Elements 1 (15, 16)
Elements 1 (17, 22)
Elements 1 (17, 18)
Elements 1 (23, 28)
Elements 1 (23, 24)
Elements 1 (30, 32)
Elements 1 (30, 31)
Elements 1 (32, 34)

107

Elements 1 (32,33)
Elements 1 (36, 41)
Elements 1 (36, 37)
Elements 1 (42, 47)
Elements 1 (42, 43)
GRow 1 (2, 3)
Endurance 1 (18,20)
Endurance 1 (18, 19)
Endurance 1 (24, 26)
Endurance 1 (24, 25)
Endurance 1 (30, 32)
Endurance 1 (30, 31)
Endurance 1 (37, 39)
Endurance 1 (37, 38)
Endurance 1 (43, 45)
Endurance 1 (43,44)
Unit 1 (2, 3)
Unit 1 (6, 14)
Unit 1 (8, 13)
Unit 1 (14, 49)
Unit 1 (14, 15)
Unit 1 (15, 29)
Unit 1 (15, 16)
Unit 1 (17, 22)
Unit 1 (17, 18)
Unit 1 (18, 20)
Unit 1 (18, 19)
Unit 1 (23, 28)
Unit 1 (23, 24)
Unit 1 (24, 26)
Unit 1 (24, 25)
Unit 1 (30, 32)
Unit 1 (30, 31)
Unit 1 (32, 34)
Unit 1 (32, 33)
Unit 1 (36, 41)
Unit 1 (36, 37)
Unit 1 (37, 39)
Unit 1 (37, 38)
Unit 1 (42,47)
Unit 1 (42, 43)
Unit 1 (43, 45)
Unit 1 (43,44)

108

Squad 5 (6, 14)
Squad 5 (8, 13)
Squad 5 (14, 49)
Squad 5 (14, 15)
Squad 5 (17, 22)
Squad 5 (17, 18)
Squad 5 (23,28)
Squad 5 (23, 24)
num 5 (15, 29)
num 5 (15, 16)
TotalSq 5 (6, 14)
TotalSq 5 (14, 49)
TotalSq 5 (14, 15)
TotalSq 5 (17, 22)
TotalSq 5 (17, 18)
TotalSq 5 (18, 20)
TotalSq 5 (18, 19)
TotalSq 5 (23, 28)
TotaISq 5 (23, 24)
TotalSq 5 (24, 26)
TotalSq 5 (24, 25)
TotalSq 5 (30, 32)
Tota]Sq 5 (30, 31)
TotalSq 5 (32, 34)
TotalSq 5 (32, 33)
row 7 (8, 13)
Unit 10 (14, 15)
Unit 10 (15, 29)
Unit 10 (15, 16)
Unit 10 (17, 22)
Unit 10 (17, 18)
Unit 10 (18, 20)
Unit 10 (18, 19)
Unit 10 (23, 28)
Unit 10 (23, 24)
Unit 10 (24,26)
Unit 10 (24, 25)
Unit 10 (30, 31)
Unit 10 (30, 31)
Unit 10 (32, 34)
Unit 10 (32, 33)
Unit 10 (36, 41)
Unit 10 (36, 37)

109

Unit 10 (37, 39)
Unit 10 (37, 38)
Unit 10 (42, 47)
unit 10 (42,43)
unit 10 (43, 45)
unit 10 (43,44)
Squad 10 (14, 15)
Squad 10 (17, 22)
Squad 10 (17, 18)
Squad 10 (23,28)
Squad 10 (23, 24)
TotalSq 12 (14, 15)
TotalSq 12 (17, 22)
TotalSq 12 (17, 18)
TotalSq 12 (18, 20)
TotalSq 12 (18, 19)
TotalSq 12 (23, 28)
TotalSq 12 (23, 24)
TotalSq 12 (24, 26)
TotalSq 12 (24, 25)
TotalSq 12 (30, 32)
TotalSq 12 (30, 31)
TotalSq 12 (32, 34)
TotalSq 12 (32, 33)
tempcount 16 (17, 22)
tempcount 16 (17, 18)
Unit 19 (17, 22)
Unit 19 (17, 18)
Unit 19 (18, 20)
Unit 19 (18, 19)
Unit 19 (23, 28)
Unit 19 (23, 24)
unit 19 (24,26)
Unit 19 (24, 25)
Squad 19 (17, 22)
Squad 19 (17, 18)
Squad 19 (23, 28)
Squad 19 (23, 24)
TotalSq 21 (17, 22)
TotalSq 21 (17, 18)
TotalSq 21 (18, 20)
TotalSq 21 (18, 19)
TotalSq 21 (23,28)

110

TotalSq 21 (23, 24)
TotalSq 21 (24, 26)
TotalSq 21 (24, 25)
Unit 25 (23, 28)
Unit 25 (23, 24)
Unit 25 (24, 26)
Unit 25 (24, 25)
Squad 25 (23, 28)
Squad 25 (23, 24)
TotalSq 27 (23, 28)
TotalSq 27 (23, 24)
TotalSq 27 (24, 26)
TotalSq 27 (24, 25)
TotalSq 31 (30, 32)
TotalSq 31 (30, 31)
TotalSq 31 (32, 34)
TotalSq 31 (32, 33)
Unit 33 (36, 41)
Unit 33 (36, 37)
Unit 33 (37, 39)
Unit 33 (37, 38)
Unit 33 (42, 47)
Unit 33 (42, 43)
Unit 33 (43, 45)
Unit 33 (43, 44)
Squad 35 (36, 41)
Squad 35 (36, 37)
Squad 35 (42, 47)
Squad 35 (42, 43)
tempcount 35 (36, 41)
tempcount 35 (36, 37)
TotalSq 35 (36, 41)
TotalSq 35 (36, 37)
TotalSq 35 (37, 39)
TotalSq 35 (37, 38)
TotalSq 35 (42, 47)
TotalSq 35 (42, 43)
TotalSq 35 (43, 45)
TotalSq 35 (43, 44)
Unit 38 (36, 41)
Unit 38 (36, 37)
Unit 38 (37, 39)
Unit 38 (37, 38)

Unit 38 (42, 47)
Unit 38 (42, 43)
Unit 38 (43, 45)
Unit 38 (43, 44)
Squad 38 (36, 41)
Squad 38 (36, 37)
Squad 38 (42, 47)
Squad 38 (42, 43)
TotalSq 40 (36, 41)
TotalSq 40 (36, 37)
TotalSq 40 (37, 39)
TotalSq 40 (37, 38)
TotalSq 40 (42, 47)
TotalSq 40 (42, 43)
TotalSq 40 (43, 45)
TotalSq 40 (43, 44)
Unit 44 (42, 47)
Unit 44 (42, 43)
Unit 44 (43, 45)
Unit 44 (43, 44)
Squad 44 (42, 47)
Squad 44 (42, 43)
TotalSq 46 (42, 47)
TotalSq 46 (42, 43)
TotalSq 46 (43, 45)
TotalSq 46 (43, 44)

To look at these again use the command 'view results'.

> >>: exit

script done on Wed Jun 13 12:32:5 1 1990

112

APPENDIX C

This appendix contains the script from an interactive session with the Mothra testing tool.

Script started on Sun Jun 17 18:51:09 1990
% mothra

+ --------------- ---------- +-

MOTHRA

Fortran-77 Mutation System

Standard Interface
Version 1.5

- -- + +

Please enter the experiment name: ? jms2
Ready to continue a mutation experiment...

Mothra Main Menu

(1) Test Case Management >
(2) Execution Management = >
(3) GO!!!
(4) Status Review >
(5) View Source Code
(6) Exit Mothra
?14

113

Status Review Menu

(1) View Test Status
(2) View Status Summary
(3) View Mutant Information >
?.1

Working...
24;IHlh"/tmp/mut026991" [Read only] 34 lines, 2079 characters ;H2J
PERCENTAGE OF VERIFIED TEST CASES 0.0%H

Type Genr'd Enabled Live %Live Equiv Dead %Enable %EScore %GScore

abs 12 12 5 41.7 0 7 100.0 58.3 58.3
aor 6 6 0 0.0 0 6 100.0 100.0 100.0
crp 6 6 1 16.7 0 5 100.0 83.3 83.3
csr 4 4 0 0.0 0 4 100.0 100.0 100.0
der 1 1 0 0.0 0 1 100.0 100.0 100.0
san 3 3 0 0.0 0 3 100.0 100.0 100.0
scr 8 8 3 37.5 0 5 100.0 62.5 62.5
sdl 3 3 1 33.3 0 2 100.0 66.7 66.7
svr 12 12 1 8.3 0 11 100.0 91.7 91.7
uoi 9 9 0 0.0 0 9 100.0 100.0 100.0

Totals 64 64 11 17.2 0 53 100.0 82.8 82.8

Class Genr'd Enabled Live %Live Equiv Dead %Enable %EScore %GScore

ary 0 0 0 0.0 0 0 0.0 0.0 0.0
con 8 8 3 37.5 0 5 100.0 62.5 62.5
ctl 1 1 0 0.0 0 1 100.0 100.0 100.0
dmn 27 27 6 22.2 0 21 100.0 77.8 77.8H
24; 1H/tmp/mut026991w [Read only] 34 lines, 2079 charactersH H

114

KAopm 6 6 0 0.0 0 6 100.0 100.0 100.0
Aprd 0 0 0 0.0 0 0 0.0 0.0 0.0
Ascl 16 16 1 6.3 0 15 100.0 93.8 93.8
Astm 6 6 1 16.7 0 5 100.0 83.3 83.3
A
ASuperCl Genr'd Enabled Live %Live Equiv Dead %Enable %EScore
%GScore
A
A ------- ---------------------- ---

A
Aall 64 64 11 17.2 0 53 100.0 82.8 82.8
Acca 30 30 4 13.3 0 26 100.0 86.7 86.7
Apda 27 27 6 22.2 0 21 100.0 77.8 77.8
Asal 7 7 1 14.3 0 6 100.0 85.7 85.7
?AHA^HK7mNo previous regular expressionm
K?ll

Status Review Menu

(1) View Test Status
(2) View Status Summary
(3) View Mutant Information =
?2

Working...
24;1H?lh"/tmp/mut026991" [Read only] 21 lines, 632 characters ;H2J
PERCENTAGE OF VERIFIED TEST CASES 0.0%4;21HSummary for Experiment
jms2

Number of Test Cases f 30
Number of Test Cases Verified = 0

Number of Mutants Enabled - 64
Number of Mutants Generated = 64
Number of Live Enabled Mutants I 1I
Number of Dead Enabled Mutants = 53
Number of Equiv Enabled Mutants = 0

115

% Non-equivalent Enabled Mutants Killed = 82.81
% Non-equivalent Generated Mutants killed = 82.81
of Mutants Types Remaining to be Generated = 0 out of 22

-H24; 1H/tmp/mut026991" [Read only] 21 lines, 632 charactersH 24;1HKll

Status Review Menu

(1) View Test Status
(2) View Status Summary
(3) View Mutant Information >
? 3

Mutant Information Menu

(1) View Inline Mutant Information
(2) Browse/Equivalence Mutants
(3) Histograms
? 3

Mutant Types: [[+,-]type,?](all) all
Histogram Parameters: [[+,-]ldes?]Qive,equiv)

Working...
24; IH?lh"/tmp/mut026991" [Read only] 17 lines, 440 characters ;H2J

116

PERCENTAGE OF VERIFIED TEST CASES 0.0%

Histogram of Live/Equivalent Mutants

Frequency 3 3 5

5*
4*

Statement 1 2 3

- H24; 1H"/tmp/mut026991" [Read only] 17 lines, 440 charactersH24; lHK?11

Mutant Information Menu

(1) View Inline Mutant Information
(2) Browse/Equivalence Mutants
(3) Histograms

Mutant Types: [[+,-]type,#,?](all)
Inline Parameters: [[+ ,-]lde?](live,equiv)

Working...

24; lH?lh"/tmp/mut026991" 34 lines, 971 characters ;H2J

Type Mutant

117

C Sum -
C Computes the sum of N integers

PROGRAM SUM

INTEGER N, RESULT

C Loop through values and compute sum
I RESULT = 0
sdl 41 # CONTINUE
svr 45 # I = 0
scr 34 # RESULT =I
2 DO10I= 1, N, 1
crp 21 # DO1OI =0, N, I
H24;1HU/tmp/mut026991" 34 lines, 971 charactersH

KA# scr 36 # DO 10 1 = RESULT, N, 1
A# scr 37 # DO 10 1 = I, N, 1
A3 RESULT = RESULT + I
A# abs 4 # RESULT = ABS(RESULT) + I
A# abs 7 # RESULT = RESULT + ABS(I)
A# abs 9 # RESULT = RESULT + ZPUSH(I)
A# abs 10 # RESULT = ARS(RESULT + I)
A# abs 12 N RESULT = ZPUSH(RESULT + I)
A
A4 10 CONTINUE
A5 END
?1l

Mutant Information Menu

(1) View Inline Mutant Information
(2) Browse/Equivalence Mutants
(3) Histograms
?2

Mutant Types: [[+,-]type,#,?](all)
Browse Parameters: [[+,-Jlder?](live,equiv, sorted)

118

Working...
Note that no equivalent mutants currently exist.
Sorting...
Browsing 11 mutants...
Filling the browse buffer...

Mutant number 45 is live:

1 RESULT =0
svr 45 #1 1=0

Command: [ln#euq?](next)

Mutant number 41 is live:

1 RESULT=O0
sdl 41 # CONTINUE

Command: [ln#euq?](next)

Mutant number 34 is live:

I RESULT=O0
Nscr 34 # RESULT =I

Command: [ln#euq?](next)

Mutant number 21 is live:

2 DO10O1=1, N,lI
crp 21 # DO101I= 0, N,lI

Command: [lnleuq?](next)

Mutant number 36 is live:

2 D010 1= 1, N, I
scr 36 # DO11I= RESULT, N, I

Command: [ln#euq?J(next)

119

Mutant number 37 is live:

2 DO10O1= 1,N,lI
scr 37 # DO11OI=1, N, 1

Command: jln#euq?](next)

Mutant number 4 is live:

3 RESULT = RESULT + I
abs 4 # RESULT = ABS(RESULT) + I

Command: [ln#euql?](next)

Mutant number 9 is live:

3 RESULT = RESULT + I
abs 9 # RESULT = RESULT + ZPUSH(I)

Command: [ln#euq?](next)

Mutant number 7 is live:

3 RESULT = RESULT + I
abs 7 # RESULT = RESULT + ABS(I)

Command: (ln#euq?](next)

Mutant number 10 is live:

3 RESULT = RESULT + I
abs 10 # RESULT =ABS(RESULT +I)

Command: (ln#euq?](next)
Refiling the browse buffer...

120

Mutant number 12 is live:

3 RESULT = RESULT + I
abs 12 # RESULT = ZPUSH(RESULT + 1)

Command: [ln#euq?](next)

Mutant number 45 is live:

1 RESULT=O0
svr 45 # I= 0

Command: [ln#euq?](next)

Mutant number 41 is live:

1 RESULT=O0
sdl 41 # CONTINUE

Command: [ln#euq?](next)

Mutant number 34 is live:

1 RESULT=O0
scr 34 # RESULT =I

Command: [ln#euq?](next)

Mutant number 21 is live:

2 DO11I= 1, N,1I
crp 21 # DO11I= 0, N,I

Command: [ln#euq?](next)

Mutant number 36 is live:

2 DO11I= 1, NII

scr 36 # DO11I= RESULT, N, 1

121

Command: [ln#euq?](next)

Mutant number 37 is live:

2 DO11I= 1,N, 1
scr 37 # DO11I=I1, N, 1

Command: [In#euq?](next)

Mutant number 4 is live:

3 RESULT = RESULT + I
abs 4 # RESULT = ABS(RESULT) + I

Command: [ln#euq?](next)

Mutant number 9 is live:

3 RESULT = RESULT + I
abs 9 # RESULT =RESULT +ZPUSHWI

Command: [ln#euq?](next)

Mutant number 7 is live:

3 RESULT = RESULT + I
abs 7 # RESULT = RESULT + ABS(I)

Command: [ln#euq?](next)

Mutant number 10 is live:

3 RESULT = RESULT + I
abs 10 # RESULT = ABS(RESULT + 1)

Command: [In#euq?](next)

122

Mutant number 12 is live:

3 RESULT = RESULT + I
abs 12 # RESULT = ZPUSH(RESULT + I)

Command: [ln#euq?](next)

Mutant number 45 is live:

1 RESULT =C
svr 45 # I = 0

Command: [ln#euq?](next)

Mutant number 41 is live:

1 RESULT = 0
sdl 41 # CONTINUE

Command: [ln#euq?](next)

Mutant number 34 is live:

1 RESULT = 0
scr 34 # RESULT =I

Command: [ln#euq?](next)

Mutant number 21 is live:

2 DO10I = 1, N, 1
crp 21 # DO1OI =0, N, 1

Command: [ln#euq?](next)

Mutant number 36 is live:

2 DOIOI = 1,N, 1

123

scr 36 # DO 101 RESULT, N,1I

Command: [ln#euq?](next)

Mutant number 37 is live:

2 DO11I= 1,N9,1
scr 37 # DO11I= I,N,1I

Command: [ln#euq?](next)

Mutant number 4 is live:

3 RESULT = RESULT + I
abs 4 # RESULT = ABS(RBSULTI) + I

Command: (ln#euq?](next)

Mutant number 9 is live:

3 RESULT = RESULT + I
abs 9 # RESULT = RESULT +ZPUSH(I)

Command: [ln#euq?](next)

Mutant number 7 is live:

3 RESULT =RESULT+ I
abs 7 # RESULT = RESULT + ABS(I)

Command: [ln#euq?](next)

Mutant number 10 is live:

3 RESULT = RESULT + I
abs 10 # RESULT = ABS(RESULT + I)

Command: [ln#euq?](next)

124

Mutant number 12 is live:

3 RESULT = RESULT + I
abs 12 # RESULT = ZPUSH(RESULT + I)

Command: [ln#euq?](next)

Mutant number 45 is live:

1 RESULT= 0
svr 45 # 1= 0

Command: [ln#euq?](next)

Mutant number 41 is live:

1 RESULT= 0
sdl 41 # CONTINUE

Command: [ln#euq?](next)

Mutant number 34 is live:

1 RESULT =0
scr 34 # RESULT =I

Command: [ln#euq?](next)

Mutant number 21 is live:

2 DO11I= 1, N, 1
crp 21 # DO11I= 0, N, 1

Command: [ln#euq?](next)

Mutant number 36 is live:

2 DO11I= 1, N, 1

125

scr 36 # DO11I= RESULT, N, 1

Command: V~n#euq?J(next)

Mutant number 37 is live:

2 DO11I= 1, N,lI
scr 37 # DO11I= I, N, 1

Command: [ln#euq?](next)

Mutant number 4 is live:

3 RESULT = RESULT + I
abs 4 # RESULT = ABS(RESULT) + I

Command: [ln#euq?](next)

Mutant number 9 is live:

3 RESULT =RESULT+ I
abs 9 # RESULT = RESULT + ZPUSH(I)

Command: [ln#euq?](next)

Mutant number 7 is live:

3 RESULT =RESULT+ I
abs 7 # RESULT = RESULT + ABSQl)

Command: [ln#euq?](next)

Mutant number 10 is live:

3 RESULT = RESULT + I
abs 10 # RESULT = ABS(RESULT + 1)

Command: Iln#euq)(next)

126

Mutant number 12 is live:

3 RESULT = RESULT + I
abs 12 # RESULT =ZPUSH(RESULT + I)

Command: [lneuq?](next)

Mutant number 45 is live:

1 RESULT=O0
svr 45 # 1= 0

Command: [ln#euq?](next)

Mutant number 41 is live:

1 RESULT= 0
sdl 41 # CONTINUE

Command: [ln#euq?](next)

Mutant number 34 is live:

1 RESULT=O0
scr 34 # RESULT =1

Command: [ln#euq?] (next)

Mutant number 21 is live:

2 DO11I= 1, N,I
crp 21 # DO11I= 0, N,1I

Command: [ln#euq?](next)

Mutant number 36 is live:

2 DO11I= 1, NI
scr 36 # DO11I= RESULT, N,1I

127

Command: [ln#euq?](next)

Mutant number 37 is live:

2 DOQ101= 1, N, I
scr 37 # DO11I= I, N, 1

Command: [ln#euq?](next)

Mutant number 4 is live:

3 RESULT = RESULT + I
abs 4 # RESULT = ABS(RESULT) + I

Command: [ln#euq?](next)

Mutant number 9 is live:

3 RESULT = RESULT + I
abs 9 # RESULT = RESULT + ZPUSH(I)

Command: [ln#euq?](next)

Mutant number 7 is live:

3 RESULT =RESULT+ I
abs 7 # RESULT = RESULT + ABS(I)

Command: [ln#euq?](next)

Mutant number 10 is live:

3 RESULT = RESULT + I
abs 10 # RESULT = ABS(RESULT + 1)

Command: [ln#euq?](next)

Mutant number 12 is live:

128

3 RESULT = RESULT + I
abs 12 # RESULT =ZPUSH(RESULT +I)

Command: [ln#euq?](next)

Mutant number 45 is live:

1 RESULT=O0
svr 45 # 1= 0

Command: [ln#euq?](next)

Mutant number 41 is live:

1 RESULT= 0
sdl 41 # CONTINUE

Command: [ln#euq?](next) q

Mutant Information Menu

(1) View Inline Mutant Information
(2) Browse/Equivalence Mutants
(3) Histograms

Mothra Main Menu

(1) Test Case Management=
(2) Execution Management
(3) GO!!
(4) Status Review-
(5) View Source Code
(6) Exit Mothra

Working...

129

24;1H?lh"/tmp/mut026991" [Read only] 21 lines, 350 characters ;H2J

SUM

C Sum -
C Computes the sum of N integers

PROGRAM SUM

INTEGER N, RESULT

C Loop through values and compute sum
1 RESULT =O
2 DO1OI= 1,N, 1
3 RESULT = RESULT + I

4 10 CONTINUE
5 END

-H24;1H"/tmp/mut026991" [Read only] 21 lines, 350 charactersH24;1HK?ll

Mothra Main Menu

(1) Test Case Management =

(2) Execution Management =

(3) GO!!!
(4) Status Review =
(5) View Source Code
(6) Exit Mothra
? 6

No test cases have been deleted.
Saving experiment jms2...
Exiting mothra... bye.
% exit

script done on Sun Jun 17 18:54:46 1990

130

APPENDIXK D

This appendix contains source code for the programs used in VIEWE. Each portion

of code contains a short header with the title and a description of the code.

/* Makefile *

CC = cc

all: walkwin viewwin faitwin

walkwin: walkwin.c ablock.o acfg.o walker.h acfg.h ablock.h
$(CC) -DHIGHRBS -DDEBUG -DREADACFG -DACFGGRAPH -g -o walkwin

walkwin.c ablock.o acfg.o -Isuntool -lpixrect -isunwindow -Im

viewwin: viewwin.c
$(CC) -g -o viewwin viewwin.c -isuntool -lpixrect -Isunwindow

faitwin: faltwin.c
$(CC) -DHIGHRES -DDEBUG -DRBADACFG -DACFGGRAPH -g -o faitwin

faltwin.c ablock.o acfg.o -Isuntool -lpixrect -isunwindow -im

spacewin: spacewin.c
$(CC) -g -o spacewin spacewin.c -Isuntool -lpixrect -isunwindow

ablock.o: ablock.c walker.h acfg.h
$(CC) -c -g ablock.c

acfg.o: acfg.c walker.h
$(CC) -c -g acfg.c

131

1* T1TLE :viewwin.c
* AUTHORS :Vici Abel and Medio Monti
" DATE : 15 September 90
" REVISED : 29 October 90 .

" SYSTEM :NPS SUN TAURUS
* LANGUAGE : SunView and C
" COMPILER : Unix cc
" DESCRIPTION : This program creates the viewer frame. This frame
" consists of a 'fly subwindow and a control panel. The user enters a filename to be
" processed. There are buttons to call REACHER on the file, as well as the
" interfaces REACHWIN, FALTWIN, and SPACEWIN.

/* SunView header files needed for the program *
#include < suntool/sunview.h >
#include < suntool/tty.h >
#include < suntool/icon.h >
#include < suntool/scrollbar.h >
#include < suntool/panel.h >
#include < suntool/alert.h >
#include < stdio.h >

1* type declarations *
Frame base fr-ame;
Tty ttysw;
Panel panel;
Panel-item filename-item; /* This is for the filename input *
Icon viewer-icon;

1* Default window sizes for HIGHRES SCREEN *

#define TTYWINHEIGHT 794
#define 1TYWINWIDTH 511
#define PANELWINHEIGHT 100
#define PANELWINWIDTH 511
#define PANELWIN 0

1* These are notify procedures for the buttons *
static void call walkero;
static void callfaltwino;
static void call spacewino;
static void fllejproco;

132

1* loading icon image into array *
static short icon-image[] {
#include "viewer.icon"

/* SunView macro for importing an icon into the program *
mprstatic(iconjixrect, 64, 64, 1, icon-image);

/* Main */

main(argc, argv)
int argc;
char *argvfl;

/* file-name = argv[1]; not used *
viewer-icon = icon-create(ICON IMAGE, &iconpixrect, 0);

/4 this is the base frame for the application *
base frame = window-create(

NULL, FRAME,
WINX, 0, /* sets x position relative to owner ~
WINY, 205, 1* sets y position relative to owner *
FRAME LABEL, "Viewer 1.0", /* frame label *1
FRAME_-ICON, viewer icon, /* icon used *

FRAMEARGS, argc, argv, 1* main args *
0);1

1* this is a tty subwindow *
ttysw = window create(base _frame, TTY,

WIN_--HEIGHT, TTYWINHEIGHT,
WIN_-WIDTH, TTYWINWIDTH

0);

/* this is a button subwindow ~
panel = window-create(

base frame, PANEL,
WINT BELOW, ttysw,
WIN HEIGHT, PANELWINHEIGHT,
WINWIDTH, PANELWINWIDTH,
WINX, PANELWINX,

0);

133

/* This is the Filename input area */
/* Filename is limited to 50 characters */

filename item = panel createitem(
panel, PANEL-TEXT,
PANEL LABELSTRING, "Filename:",
PANELVALUEDISPLAY-LENGTH, 50,

0);

/* this is a button for calling WALKER */
/* and then calls REACHWIN */
panel create_item(

panel, PANEL BUTTON,
PANELNOTIFY PROC, callwalker,
PANELLABEL IMAGE, panel-button-image (

panel, "Walker", 0, 0),
0);

/* this is a button for calling FALTWIN */
panel createitem(

panel, PANELBUTTON,
PANELNOTIFY PROC, call faltwin,
PANEL LABELIMAGE, panelbutton(image

panel, "Falter", 0, 0),
0);

/* this is a button for calling SPACEWIN */
panel-create item(

panel, PANELBUTTON,
PANELNOTIFYPROC, call_spacewin,
PANELLABELIMAGE, panel-button image (

panel, "Spacer", 0, 0),
0);

window fit(base_frame);
window-main-loop(base frame);
exit(0);

134

1* Process to call REACHER and WALKWLN ~
static void
call -walkero

char tmpbuf[8lJ;
Event event;
int result;

spritf(tmp_bOuf, "% s", panel~get value(filename item));

1* Check for Wp as last character. *
/* Simple test for Pascal file. */

if(tmpbufjstrlen(tmpobuf)-1] = = 'p') f

/* call REACHER on the filename entered by user *
sprintfttmpbuf, "reacher % s &\n", panelget value(filename item));
ttysw input(tty sw, tmp buf, strlen(tmpbuf));

/* call WALKWIN with filename, as argument *
sprintf(tmpbuf, "wallcwin %s &\n", panelget value(filename item));
ttysw-input(tty-sw, tmp buf, strlen(tmpbfuf));

/* file name does not end in Vp *
else {

msg("Improper filename.", 1);
panel -set -value(fllename-item,")
return;

135

1* Procedure to pop up alert frame with message about improper *
/* filename. Called by call-walker. *
msg(msg, beep)
char *msg;
int beep;

int result;
Event event;
char *continue-msg = "ress \"Continue\" to proceed.";
result = alertjrompt(base frame, &event,ALERT MESSAGE -STRINGS, msg,

continue msg, 0, ALERT NO BEEPING, (beep) ? 0: 1,
ALERTBUTITONYES, "Continue", 0);

/* only one option for the user ~
switch (result) {

case ALERTYES:
break;

/* Procedure to call FALTWIN. Uses filename in
*filename-item.

static void
call faltwino

char tmp_ buf[81];
sprintfttmp~buf, "faltwin %s &\n", panelget value(filename-item));
ttysw input(tty sw, tmp_buf, strlen(tmpbuf));

1* Procedure to call SPACEWIN. *
static void
calL spacewino

char tmpbuf[8l];
sprintf(tmpbuf, "spacewin &\n", panelget value(filename item));
ttysW input(tty sw, tmp__buf, strlen(tmpb.uf));
panel set value(filename item, ")

136

/* TILE ~ : walkwinxc
* AUTHORS :Vick Abel and Medjo Monti
* DATE :5 October 1990
* REVISED : 12 December 1990
* SYSTEM :NPS SUN TAURUS
* LANGUAGE : SunView and C
" COMPILER : Unix cc
" DESCRIPTON : This program is the interface for the failure region
" testing tool WALKER. Chapter II contains all the pertinent details relating
" to this code.

1* SunView header files needed in this program. ~
#define MAIN /* Necessary for the acfg graph *
#include < suntool/sunview.h >
#include < suntool/panel.h >
#include < suntool/textsw.h >
#include < suntool/tty.h >
#include < suntool/canvas.h >
#include < suntool/icon.h >
#include < suntool/scrollbar.h >
#include < pixrectlprjine.h >
#include < stdio. h>
#include < math.h >

1* These macros contain declarations necessary for drawing the
" acfg graph. These header files are from Dr. Shimeall's testing
" tools.

#ifdef ACFGGRAPH
#include "walker.h"
#include "ablock.h"
#include "acfg.h"
#include XDISP 50
#endif ACFGGRAPH

#define NUM POINTS 1000 /* Results in a smooth circle *
#define XDONE 200
#define YDONE 200
#define XSTART 200 /* Graph staring point *
#define YSTART 200 /* Graph starting point *
#define POSMAX 200

137

/* Presently necessary for defining a high resolution screen ~
#idef HIGHRES
#define STARTX 200
#deflne STARTY 50
#define RADIUS 10
#define BASEFRAMCEX 525
#define BASEFRAMEY 205
#define ACFGHEIGHT 794
#define ACFGWIDTH 500
#define CANVASHEIGHT 1400
#define CANVAS WIDTH 900
#define TEXrWINHEGHT 394
#define TEXTWINWIDTH 495
#define TTYWINHEIGHT 394
#define TrYWINWIDTH 495
#define PANELWINHEGHT 100
#define PANELWINWIDTH 1000
#define PANELXGAP 10
#define FONT 1
#define XDISP 25
#define YDISP 25
#endif HIGHRES

/* Presently necessary for defining low resolution screens *
#idef LOWRES
#define STARTX 150
#define STARTY 25
#define RADIUS 5
#define BASEFRAMEX 365
#define BASEFRAMEY 163
#define ACFGHEIGHT 476
#define ACFGWIDTH 350
#define CANVASHEIGHT 540
#define CANVASWIDTH 890
#deflne TEXTWINHEIGHT 236
#define TEXTWINWIDTH 347
#define TTYWINHEIGHT 236
#define 1TYWINWIDTH 347
#define PANELWINHEIGHT 100
#define PANELWVINWIDTH 702
#define PANBLXGAP 5
#define FONT 0
#define XDISP 15

138

#define YDISP 12
#endif LOWRES

1* these define pixrect ptrs *
#define NULLPR ((Pixrect *) 0)

1* vlist is an array of structures prpos for the circle *
static struct prpos vlistO[NUMPOINTS];

1* SunView type declarations *

Frame base-frame;
Panel controlpanel;
Canvas acfg canvas;
Textsw text sw;
Panel item walker menu;
Panel-item walker input string;
Panel~item lister -input-String;
Panel -item lister _output-string;
Tty ttysw;
Pixfont *od
Pixfont *controlfont;

Pixwin *pw; I*pixwin object *
int i, j; /* Loop variables *

/* Initializing graph variables *
int startxval = XSTART;
int startyval = YSTART;
int finishxval = XDONE;
int finishyval = YDONE;
float angle; /* for circle computations *
float increment; /* for circle computations ~
int counter = 0; /* for circle computations *
int walker-run = 0;
char *flle name; /* Name of file to load into text subwindow *

#ifdef ACFGGRAPH
FILE *inmie; /* Logical file name for acfg graph *
#endif ACFGGRAPH

139

#ifdef ACFGGRAPH
/* Graph object declarations *
int curx;
int cury;
int finaix;
int finaly;
int rootid;
/* structure for an (x,y) coordinate *
typedef struct

I
int x;
int y;

}POINT;
/* Array of the above structures *
POINT position[POSMAX];
int TOS = 0; /* Top of Stack *

acfg *cumnode; /*ptr to acfg *
ahbkref curbiock; /*ptr to hdr structure ~
acfg *stack[POSMAX]; /*stack of acfg structures ~
#endif ACFGGRAPH

1* SunView declarations for Icons *
Icon walker -icon;
Icon walker-menu-icon;

/* Procedures used by buttons and menus *
static void call-annotateO;
static void call -changeo;
static void calijoino;
static void callgotoo;
static void callhjrioro;
static void call-leftO;
static void call-righto;
static void call nodeo;
static void call ypeo;
static void walkerjproco;
static void listerproco;

#idef ACFGGRAPH
static void drawlineo; /* For drawing arcs between nodes *

static void drawcircleo; /* For drawing the nodes *
#endif ACFGGRAPH

140

1* This is the icon for the fr-ame *
static short icon-image[] {
include "walker. icon"
1;

* 1* mpr static: is a SunView macro that imports an icon into the program*/
mprstatic(iconpixrect, 64, 64, 1, icon-image);

* 1* This icon was created to allow differentiation between a button
" with a related menu and a simple button. It is used for the
" menu for interaction with WALKER.

static short walker _array[]={
#include " walker-menu. icon"

mjistatic(walkerjpixrect, 64, 64, 1, walker-array);

#define ADDEDEXITNODE 999999
int shifts[POSMAX];

void
subtreeshift(root,disp)

acfg *root;
int disp;

if (root ==NULL) return;
if (root- > acfgnum = ADDEDEXITNODE) return;
shifts[root- > acfgnum - rootid] + =disp;

subtreeshift(root- > acfglft, disp);
subtreeshift(root- > acfgrt,disp);

mnt calcoffsets(root)
acfg *root;

int leftval, rightval;
if (root= =NULL) return 0;
if (root- > marked = = 1) return 0; 1* crossovers possible *
root-> marked = 1;
if (root- > acfgnum = = ADDEDEXITNODE)

shifts[POSMAX-l] =0;

else{

141

shifts[root- > acfgnum - rootid] = 0;

if (root-> acfglft ==NULL) return 0;
if (root- > acfgrt ==NULL) return calcoffsets(root- > acfglft);
leftval = calcoffsets(root- > acfglft);
rightval = calcoffsets(root- > acfgrt);
if (leftval > 0)

if (rightval > 0){
subtreeshift(Toot- > acfglft, - (leftval +rightval + 1)/2);
subtreeshift(root- > acfgrt, (lefta 1+rightval + 1)/2);

else{
subtreeshift(root- >acfgrt, 1 + leftvall2);
subtreeshift(root- > acfglft, -(1 + leftvall2));

else{
subtreeshift(root- >acfglft, - (rightval + 2)/2);
subtreeshift(root- > acfgrt, (rightval +2)/2);

return (int) 1.5*(leftval+rightval)+ 1;

void
drawgraph(root)
acfg *root;

int done-draw = 0;
curnode, = root;
rootid = root- >acfgnum;
curx = STARTX;
cury = STARTY;

calcoffsets(root);
clearnode(root);

pwwritebackground(pw,0,0,
(pw- >pwjixrect)- >pr _size. x, (pw- >pwpiuect)- >pr _size.y,PIX_CLR);

142

do

#idef DEBUG
printf(" Drawing node %d (%d) into pos %d\n",curnode->acfgnum,

cumode,curnode- > acfgnum-rootid);
#endif DEBUG

if (curnode = NULL){
printf(" ran off edge of graph\n");
break;

if(curnode- > acfgrt !=NULL){

#idef DEBUG
printf(" Pushing node %d (%d) into stack %d\n",cumode- >acfgnum,curnode,TOS);
#endif DEBUG

stack[TOS] = curnode;
TOS ++;
finaix = curx - XDISP +

((cumnode- > acfglft- > marked ==1) ? 0:
((curnode- > acfglft- > acfgnum ==ADDEDEXITNODE) ?0:
shifts[cumode- > acfglft- > acfgnum-rootid]));

Fnaly = cury + YDISP;
drawline(curx, cury, finaix, finaly);
drawcircle(curx, cury);
if (cumnode- > acfgnum ==ADDED EXrTNODE){

positionjjPOSMAX-1].x = curx;
position[POSMAX-1].y = cury;

else
position~cumode- >acfgnum-rootid].x = curx;
position~cumode- >acfgnum-rootid].y = cury;
curx = finaix;
cury = finaly;
cumode- >marked = 1;

#ifdef DEBUG
printf(" Advancing left to node % d\n",curnode- > acfglft);

* #endif DEBUG

cumnode = cumnode- >acfglft;

143

else if(curnode- > acfglft = NULL && TOS > 0){

#ifdef DEBUG
printf(" Popping node %d (%d) from stack %d\n*,stack[TOS-l]->acfgnum,

stack[TOS-l],TOS-l);
#endif DEBUG

TOS--;
curnode = stack[TOS];
finaix = curx + XDISP +

((curnode- >acfgrt- >marked ==1) ? 0:
((cumnode- > acfgrt- > acfgnum = ADDEDEXITNODE) ? 0:
shifts[cumode- > acfgrt- > acfgnum-rootid]));

finaly = cury + YDISP;
if (cumnode- > acfgnum = = ADDEDEXITNODE){

position[POSMAX-l].x = curx;
positionIIPOSMAX-1].y = cury;
drawcircle(curx, cury);

else{
position~cumode- >acfgnum-rootid].x = curx;
position[curnode- >acfgnum-rootid].y = cury;
drawline(curx, cury, finaix, finaly);
drawcircle(curx, cury);
curx = finaix;
cury = finaly;

#ifdef DEBUG
printf(" Advancing right to node %d\n" ,curnode- > acfgrt);
#endif DEBUG

cumnode = curnode- >acfgrt;

else if (curnode- > acfglft I=NULL){
if (cumnode- > acfgnum !=ADDED EXITNODE){

#idef DEBUG
printf(' Advancing down to node %d\n",cumnode- >acfglft);
#endif DEBUG

144

curnode = curnode- >acfglft;
finaix = curx;
finaly = cury + YDISP;
if (curnode- > acfgnum = ADDEDEXINODE){

position[POSMAX-1].x = curx;
position[POSMAX-1].y = cury;
drawcircle(curx, cury);

else
position[curnode- >acfgnum-rootid].x = curx;
position[curnode- >acfgnum-rootid] .y = cury;
drawline(curx, cury, finaix, finaly);
drawcircle(curx, cury);
cury = finaly;

else {done-draw =W ;

if (cumnode! = NULL)
while((!done draw) &&

((cumnode- > acfgnum = ADDEDEXITNODE) II(curnode- > marked
M=1)

&& (TOS > 0)){

#idef DEBUG
printf(" Popping node %d (%d) f -.n stack %d\n",stack[TOS-l]->acfgnum,

stack[TOS- 1] ,TOS-l);
#endif DEBUG

cumnode = stack[TOS-1];
if (curnode = = NULL) (done-draw= 1; curnode=root; break;)

if (cumnode- > acfgnum = = ADDED EXIT NODE){
curx = position[POSMAX].x;
cury = position[POSMAX].y;

else{
curx = position[curnode- >acfgnum-rootid].x;
cury = position[curnode- >acfgnum-rootid].y;

if (curnode- > acfgrt ==NULL) {done-draw = 1; break;)I
finalx = curx + XDISP +

((curnode- > acfgrt- > marked = 1) ? 0:

145

((curnode- > acfgrt- > acfgnum = = ADDEDEXITNODE) ? 0:
shifts~curnode- > acfgrt- > acfgnum-rootidJ));

finaly = cury + YDISP;
drawline(curx, cury, finaix, finaly);
curx = finalix;
cury = finaly;

#ifdef DEBUG
printf(" Advancing remaining link to node %d\nw,curnode- > acfgrt);
#endif DEBUG

curnode = curnode- > acfgrt;
TOS--;,

else (done-draw = 1;
cumocie = root;

}while (! done-draw && ((cumnode- > acfglft !=NULL) II
(cumnode- > acfgrt !=NULL) I
(TOS > 0)));

if (!done draw) drawcircle(curx, cury);

1* Main */

main(argc, argv)
int argc;
char *argvo;

1* This is the acfg window test procedure *

/* It can be deleted in future versions ~
#ifdef MYGRAPH
static int npts[1] = (NUMPOINTS);
#endif MYGRAPH

#ifdef DEBUG
printf("started main\n");
#endif DEBUG

1* assign second item of input line to file-name to display it *
1* in the text subwindow *

146

file-name = argv[1];

#ifdef DEBUG
printf("starting to initialize windows\n");
#endif DEBUG

walkericon = iconcreate(ICON_IMAGE, &icon.pixrect, 0);

/* this is the base frame for the application */
base frame = windowcreate(NULL, FRAME,

WINX, BASEFRAMEX, /* sets x position relative to owner */
WINY, BASEFRAMEY, /* sets y position relative to owner */
FRAME LABEL, "Walker Window 2.4", /* frame label */
FRAMEICON, walker-icon, /* icon used */
FRAMEARGS, argc, argv, /* main args */
0);

/* this is a canvas subwindow */
acfgcanvas = windowcreate(baseframe, CANVAS,

WINHEIGHT, ACFGHEIGHT,
WIN WIDTH, ACFGWIDTH,
CANVASAUTO-EXPAND, FALSE,
CANVASAUTO SHRINK, FALSE,
CANVASWIDTH, CANVASWIDTH,
CANVASHEIGHT, CANVASHEIGHT,
WIN VERTICALSCROLLBAR, scrollbar create(

SCROLLPLACEMENT, SCROLLWEST,
SCROLLPAGEBUTIONS, FALSE,
0),

WINHORIZONTALSCROLLBAR, scrollbar_create(
SCROLLPLACEMENT, SCROLLSOUTH,
SCROLLPAGEBUTTONS, FALSE,
0),

0);

#ifdef ACFGGRAPH
#ifdef DEBUG
printf("Ready to start graph.c\n");
#endif DEBUG

/* ------------ graph.c main code -------- -/
/* reacher-out is where we find the textual representation of the
* control flow graph. We must put it into the logical file to use
* use it.

147

infile = fopen~reacher -out", "r');
if (infile = = NULL) (

fprintf(stderr, "No reacher-out flle\nu);
exit(l);

ahien = 0;
/* Dynamically allocate memory for the logical file and put it into
" memory. The function readreacher is part of the failure region
" testing tools. We used it with our program with Dr. Shimeall's
" permission.

while(! feoffinfile)){
int i;
ahlen ++;
i = sizeof(ahbkref);

iftahlen > 1) {
ahprocs = (ahbkhdr **)MYREALLQC(ahprocs, ahlen*i);

else{
ahprocs = (ahbkhdr **) MYALLOC(i);

I
*(allprocs + ahlen-1) = allocahbko;

readreacher(inflle, *(ahprocs + ahlen-l));

#ifdef DEBUG
printf("Ready to draw graph\n");
#endif DEBUG

1* initialize *

curbiock =*(allprocs + ahlen-l);
cumnode =(curbiock- >abkgrph);
if (cumode = = NULL) j

fprintf(stderr, "No nodes in reacher-out main block\n*);
exit(1);

/* Define pw and set up circle coordinates *

148

pw = canvaspixwin(acfg2canvas);
increment =2 * M-PI / NUM POINTS;
for(angle =0; angle < (2 * M PI); angle + = increment)

vlistO[counter].x =RADIUS * cos(angle);
vlistO~counter].y = RADIUS * sin(angle);
counter+ +;

drawgraph(curblock- > abkgrph);
#ifdef DEBUG
printf("Ready to initialize graphics panelhn");
#endif DEBUG

#endif ACFGGRAPH

#ifdef MYACFG
pw = canvasjixwin(acfgcanvas);

1* Draw the circle */
increment =2 * M-PI / NIJMPOINTS;
for(angle =0; angle < (2 * MPI); angle + =increment){

vlistO[counter].x = RADIUS * cos(angle);
vlist0[counter].y = RADIUS * sin(angle);
counter+ +;

/* This construct is designed to draw a vector, then to load an
" array with the points to use to draw the circle, and the same
" points are used to draw the lines around the polygon.

foroj = 1; j < 6; j ++){
pwvector(pw, startxval, startyval, finishxval, finishyval,
PIXSRC, 1);

pwjpolygon 2(pw, startval, startyval, 1, npts, vlist0,
PLX-CLR, NULLPR, 0, 0);

for(i = 0; i < (NUM_POINTS - 1); i ++)
pwvector(pw, vlist0(iJ.x + startxval, vlistO~i].y +
startyval, vlist0i+lJ.x + startxval, vlist0(i+1].y +
startyval, PIXSRC, 1);

pw vector(pw, vlistO[NUMPOINTS -1].x + startxval,

149

vlistO[NUMPOINTS -1].y + startyval,
vlistO(O].x + startxval, vlistO[OJ.y + startyval,
PIXSRC, 1);

startyval = finishyval;
finishyval + = YSTART;

#endif MYACFG

#ifdef DEBUG
printf("Ready to initialize text panelhn");
#endif DEBUG

/* Define a font for the text subwindow and control panel *

if (FONT = =1)
controlfont =
pfopen("/usr/lib/fonts/fxedwidthfontslscreen.r. 16");

else{
controlfont
pfopen("/usr/lib/fonts/fixedwidthfonts/screen.r. 11");

1* this is a text subwindow *
text-sw = window-create(base-frame, TEXTSW,

WINRIGHTOF, acfg canvas,
WIN-HEIGHT, TEXTWINHEIGHT,
WIN-WIDTH, TEXTWLNWLDTH,
/* word wrap vice default */
TEXTSWLINEBREAKACTION, TEXTSWWRAPATWORD,

0);

#ifdef DEBUG
printf("Ready to initialize comm panelhn");
#endif DEBUG

1* this is a tty subwindow *
ttysw = window create(base-frame, TTY,

WIN-BELOW, text sw,
WINRIGHTOF, acfg cavas,
WINHEIGHT, iTYWINHEIGHT,
WIN7WIDTH, TrYWINWIDTH,

0);

150

#ifdef DEBUG
printf("Ready to initialize control panelhn");
#endif DEBUG

1* this is a panel subwindow *
controlpnel = window -create(base frame, PANEL,

WIN-BELOW, acfg canvas,
WIN HEIGHT, PANELWINHEIGHT,
WIN-WIDTH, PANELWINWIDTH,
WI'NXO0
PANELITEMXGAP, PANELXGAP,
WINFONT, controlfont,

0);

#ifdef DEBUG
printf("Ready to initialize control panelhn");
#endif DEBUG

1* puts file in the text-window *
window-set(text-sw, TEXTSWFILE, file-name, 0);

#ifdef DEBUG
printf("Ready to initialize button menu and input\n");
#endif DEBUG

/* Walker buttons and input *
walker-menu = panel create item(controljanel,

PANEL -CHOICE, PANEL CHOICE STRINGS,
"Run",
"Help",
"Save",
"Quit",
0,

PANELDISPLAYLEVEL, PANEL-NONE,
PANELLABEL_-IMAGE, &walker-pixrect,
PANELNOTIFYPROC, walkerjproc,

0);

1* Annotate Button *

if(FONT = = 1
bold = pf open("/usr/lib/fonts/fixedwidthfonts/screen.b. 16");

else
bold = pf open("/usr/lib/fonts/fixedwidthfonts/screen.r. 11");

151

panel create item(controljanel, PANEL -BUTTON,
PANELNOTIFY PROC, call-annotate,
PANEL LABELIMAGE, panelbutton-image(

controljanel, -Annotate, 9, bold) ,
0);

/* Change Condition Button *
panel create item(controljnlPAE BTrON,

PANELNOTIFY PROC, call-change,
PANEL LABEL IMAGE, panel button image(

controlyanel, -Condition-, 9, bold),
0);

/* Join Button *
panel create item(controlpanel, PANEL -BUTTON,

PANELNOTIFY PROC, calljoin,
PANEL_-LABELIMAGE, panel-button-image(

controljpanel, "Join", 8, bold),
0);

1* Goto Button *
panel create item(controlpanel, PANEL -BUTTON,

PANELNOTIFY PROC, callgoto,
PANEL_-LABELIMAGE, panel button image(

controlpanel, "Goto", 8, bold),
0);

1* Prior Button *
panel create item(controlpanel, PANEL -BUTTON,

PANELNOTIFY PROC, calljrior,
PANEL -LABELIMAGE, panel button-image(

Controljpanel, "Prior", 8, bold),
0);

1* Left Button *
panel create item(controljanel, PANEL -BUTTON,

PANEL NOTIFY PROC, call-left,
PANELLABEL IMAGE, panel button image(

controlpanel, -Left-, 8, bol~d),
0);

/* Right Button *
panel-create item(controlpanel, PANEL BUTTON,

152

PANELNOTIFYPROC, callright,
PANEL LABELIMAGE, panelbuttonimage(

controlpanel, "Right", 8, bold),
0);

/* Node Button */
panel createitem(contro1jmne1, PANEL-BU rON,

PANELNOTIFY PROC, call node,
PANELLABEL IMAGE, panel.button image(

controlpanel, "Node", 8, bold),
0);

/* Type Button */
panel-createitem(controlpanel, PANEL BUTrON,

PANELNOTIFYPROC, call_type,
PANELLABELIMAGE, panelbuttonimage(

control_panel, "Type", 8, bold),
0);

/* Lister Button */
panel createitem(controljpanel, PANELBUTrON,

PANEL NOTIFYPROC, listerproc,
PANELLABELIMAGE, panel button image(

controlanel, "Lister", 8, bold),
PANELITEMX, 100,
PANELITEMY, 70,

0);

/* This is the input string code for walker */
walker input string = panel create item(

control_panel, PANELTEXT,
PANEL LABEISTRING, "Walker input string:",
PANELVALUEDISPLAYLENGTH, 50,
PANELITEMX, 94,
PANEL_ITEM_Y, 40,

0);

/* This is the input string code for lister */
lister input string = panelcreate_item(

controlyanel, PANEL_TEXT,
PANEL LABEL STRING, "Lister input:",
PANEL_VALUE_DISPLAY-LENGTH, 15,

0);

153

/* This is the output filename string code for lister *
lister-output string = panel-create-item(

controljyanel, PANELTEXT,
PANELLABEL STRING, "Lister output:",
PANELVALUEDISPLAYLENGTH, 15,

0);

#idef DEBUG
printf(*AII buttons initialized\n");
#endif DEBUG

window-flt(base frame);

#ifdef DEBUG
printf("Begin window main loop\n");
#endif DEBUG

window-main ioop(base frame);

exit(O);

static void
call -annotateQ

char walker-string buffer[8 1];
sprintf(walker -string_biuffer, "a %s\n",

panelget-value(walker-input string));
if (walker-run = = 1) {
ttyswinput(ttysw, walker -string biuffer, strlen(

walker string buffer));

panel_set-value(walker input string, ")

static void
call -changeo

char walker string biuffer[8 1];
sprintf(walker-string~buffer, "c %s\n",

panelget-value(walker~input string));
if (walker run = = 1
ttysw input(tty sw, walker-string biuffer, strlen(

walker-string buffer));

154

I panel set~value(walker inpu-ti

static void
calljoino

char walker stningbuffer[8 1];
sprintf(walker string bPuffer, "j %s\n",

panelgetvalue(walkerinput string));
if (walker run = =1
ttysw input(tty sw, walker -string_ buffer, strlen(

wallcerstringbuffer));

panel set-value(walker-input string, ")

static void
callgotoo
{char walker-in-value[81];

char walker-string buffer[8 1];
strcpy(walker-in-value, panelget value(walker input string));
sprintftwalker-string buffer, "g %s\n",walker-in-value);
curblock=findahbk(walker-in-value);
iF ((walker run = = 1) && (curbiock! = NULL)){
ttyswinput(ttysw, walker -string__buffer, strlen(

walker-string__buffer));
I
else { curblock = *(aJhprocs+ahlen-1);

1* eventually, we'll put a pop-up error message here *

drawgraph(curblock- > abkgrph);
panel set value(walker input-string, ")

static void
callprioro

char walker-stringbuffer[81];
sprintf(walker -string buffer, "p\n",

panelget value(walkerinput string));
if (walker -run = = 1) {
ttysw-input(tty sw, walker string buffer, strlen(

155

walker string_ buffer));

panel set value(walker_input string, w)

static void
call -lefto

char walker-string_ buffer[81];
sprintf(walker -string -buffer, "lRn",

panelgetvalue(walkerinput string));
if (walker-run = = 1) 1
ttysW lnput(tty sw, walker string buffier, strlen(

walker-string_ buffer));

panel set-value(walker-input string, ")

static void
call righto

char walker-string_ buffer[8 1];
sprintf(walker-string._buffer, "rAn",

panelget -value(walker input string));
if (walker-run= = 1) 1
ttysw-input(ttysw, walker -string buffer, strlen(

walker-string_ buffer));

panel set value(walker-input string, ")

static void
call -nodeo

char walker-string_ buffer[8 1];
sprintf(walker -string buffer, "n %s\n",

panelget -value(walker -input -string));
if (walker-run== 1) (
ttyswinput(ttysw, walker -stringbuffer, strlen(

walker-stringbuffer));,

panel set value(walker-input string,

156

static void
call typeo

char walker-string_ buffer[8 1];
sprintf(walker string_ buffer, "t %s\n",

panelget value(walker _input string));
if (walkerjun== 1) (
ttysw input(tty sw, walker string bfer, strlen(

walker string. buffer))

panel set value(walker input string, ")

static void
walker~proc(item, value, event)

Panel -item item;
mnt value;
Event *event;

char walker string_ buffer[8 1];
if(event -action(event) =

MSRIGHT && event is down(event)){
switch (value){

case 0:
sprintftwalker string buffer, "walker -r reacher-out~n",
panelgetvalue(walker -input -string));

if (walker-run = = 0) {
ttysw input(tty_sw, walker-string buffer,
strlen(
walker -string buffer));

walker-run = 1;

panelset -value(walker input string, ")
break;

case 1:
sprintf(walker -string -buffer, "h\n",
panelget value(walcer input string));

if (walker-run = = 1) {
ttysw -input(tty sw, walker-string_ buffer,
strlen(walker-stringbfuffer));

157

panel-set-value(walker input string, ")

break;

case 2:
sprintf(walker string bfer, * s %sAn",

panegetvalue(walkerinputstring));
if (walker un = = 1) {

ttysw input(tty sw, walker string_ buffer,
strlen(walker _string_ buffer));

panel set value(walker input string, ;

break;

case 3:
sprintftwalker string_ buffer, *q\n",

panelget -value(walker -input -string));
if (walker-run ==1){

ttysw -input(tty sw, walker-string_ buffer,
strien (walker -string b~uffer));

walker-run = 0;
panelset~value(walker input string, ")

sprintftwalker _string_ buffer, "clear~n",
panelgetvalue(walkerinput string));

ttysw input(tty sw, walker string~buffer, strlen(
walker -string. buffer));

break;

static void
listerjroco

char walker-string biuffer[81];
sprintf(walker-string biuffer, "lister -o %s %s\n",
panelge~valueoister output string),
panelge~valueolister input string));

ttysw input(tty sw, walker string bfer, strlen(
walker string buffer));- _if

panel set -value(lister input-string, ")

panel set value(lister output string, ")

158

#ifdef ACFGGRAPH
static void
drawline(curx,cury,finalx,finaly)
int curx, cury, finalx,finaly;

#ifdef DEBUG
pnintf("Begin Drawline Function\n");
printf("%d %d %d %d\nw, curx, cury, finaix, finaly);
#endif DEBUG

pwvector(pw, curx, cury, finaix, finaly, PIX SRC, 1);

#ifdef DEBUG
printf("Leaving drawline function\n");
#endif DEBUG

static void
drawcircle(curx, cury)
int curx;
int cury;

static mnt npts[1] = (NUM-POINTS};
#ifdef DEBUG

* printf("Begin drawing Circle\n");
#endif DEBUG

pwj~olygon-2(pw, curx, cury, 1, npts, vlistO, PIXCLR, NULLPR, 0,
0);

for(i = 0; i <(NUMPOINTS - 1); i ++)
pwvector(pw, vlistO~i].x + curx, vlistO[i].y + cury,
vlistOi+l].x + curx, vlistO[i+1J.y + cury, PIX_SRC, 1);

#ifdef DEBUG
printf("Leaving circle function\n");
#endif DEBUG

#endif ACFGGRAPH

159

1* walker.h - shared global types/defines for walker *
I* T. Shimeall July 1990 */

/*guard against multiple expansions*/
#indef WALKER

#indef EXTERN
#ifdef MAIN
#defi~ne EXTERN
#define IN1T(Value) =Value

#else
#define EXTERN extern
#define IN1T(Value)
#endif MAIN
#endif EXTERN

#define NOSTMT 0
#define ASSIGNSTMT 1
#define CALLSTMT 2
#define IFSTMT 3
#define LOOPSTMT 4
#define CASESTMTr 5
#define WITHSTMT 6
#define BEGINEND 7
#define GOTOSTMT 8
#define OTHER_ STMT 9
/* below here -- extentions from REACHER tech report by *
/* R. Griffin *

#define EMPTYSTMT 10
#define FCALLSTMT I11
#define IFELSESTMT 12
#define FLOOPSTMT 13
#define RLOOPSTMTr 14
#deflne CASEIFSTMTr 15
#define CASEEXITSTMT 16
#define UNTILSTMAT 17

#define MAX-NAME 40
#define MAXCOND 512
#define BUFLEN 1024

typedef char condition[MAXCOND];
typedef struct grphrec

160

int acfgnum;
int acfglnum;
short marked;
struct grphrec *acfglft;
struct grphrec *acfgrt;
condition acfglcnd;
condition acfgrcnd;
int acfgncalls;
struct ahbkrec **acfgcalls;
char acfgtext[BUFLEN];
char acfgsumm[BUFLEN];
int acfgtype;

}ac fg;

typedef struct ahbkrec
char abknaxne[MAX _NAME];
int abknumret;
int abkcurret;
acfg **abkret;
condition abkreach;
acfg *abkglrph;
int abknsubs;
struct ahbkrec **abksubs;
char *abkdecl;

Iahbkhdr;

typedef ahbkhdr *ahbkref;,

EXTERN char ahprgm[MAX -NAME] INIT("
EXTERN int ahien INIT(0);
EXTERN ahbkhdr **ahprocs IN1T(0);
EXTERN char flterr[MAX NAME] INrT("
char *mallo;
char *rea1lo;
#define P2CP(Obj) ((char *) Obj)
#define LNT(Obj) (int) Obj)
#define MAKEPOS(Size) ((INT(Size) > 0) ? INT(Size):1)
#define MYALLOC(Size) malloc(MAKEPOS(Size))
#define MYREALLOC(Obj,Size) ((P2CP(Obj) = =P2CP(NLJLL)) ? MYALLQC(Size)\

realloc(Obj,MAKEPOS(Size)))
#define MYFREE(Obj) (P2CP(Obj) ==P2CP(NULL) ? NULL : free(Obj))
#define WALKER
#endif WALKER

161

/* ablock.h -- extern declarations for block header */
/* manipulations */
/* T. Shimeall July 1990 /

#ifndef ABLOCK
extern void initahbko; /* initialize block /
extern ahbkref allocahbko; /* allocate new block */
extern void remahbko; /* delete named block */
exter int readreacherO; /* read data from reacher*/
extern void writereacherO; /* write falter save file*/
extern ahbkref findahbko; /* find named block */
extem ahbkref findgrpho; /* find block containing indicated node */
#endif

162

/* acfg.h -- external declarations of public functions in acfg.c ~
1* T. Shimeall October 1989 *
#ifndef ACFG
extern acfg *findacfgo; /* find or allocate acfg node *
extern acfg *alloccfgo; /* allocate new acfg node *
extern acfg *findnode(); /* find acfg node in graph *
extern void clearnodeo; /* remove marking after acfg graph traversal *
extern void fieeacfgo; /* add acfgnode to free list *
#endif

163

1* ablock.c -- block header manipulation routines *
/* T. Shimeall July 1990 *
#include < stdio.h >
#undef MAIN
#define ABLOCK
#include "walker.h"
#include "ablock.h"
#include "acfg.h"

typedef struct, ahbkkprec
ahbkref cur; 1* cur points to a block of 10 header records1
struct ahbkkprec *neCxt;
struct ahbkkprec *last;

}ahbkeep;

static ahbkeep *bkalloc = NULL; /* allocated header blocks (includes free) *
static ahbkeep *bkcur =NULL; /* last entry of header blocks list *
static ahbkref bkfree =NULL; /* free header blocks */
static char *bkname =NULL; /* name of next block, found while reading *

/* acfg nodes */
static int exitid = 999999; 1* initial id for single-exit nodes *

void initahbk(hdr) /* initialize header values to zero values *
ahblcref hdr;

int i;
for (i=O; i<MAX -NAME; i ++)
hdr- >abkname[i] =\1

hdr- >abknumret =0;

hdr->abkcurret = 0;
hdr- >abkret = (acfg **) 0;
strcpy(hdr- > abkreach, "true"); /* default: routine always gets called *
hdr- >abkgrph = (acfg *) 0;
hdr- >abkn subs = 0;
hdr- >abksubs = (ahbkhdr **) 0;
hdr- > Abkdecl = (char *) 0;

ahbkeep *allocahkeepo / allocate entry of bkalloc *
{ahbkeep *ahbcur;

ahbkref cur;
ahbcur = (ahbkeep *) MYALLOC(sizeof(ahbkeep));

164

ahbcur- > next =NULL;

ahbcur- > last =NULL;

ahbcur- > cur =(ahbkhdr *) MYALLOC(10*sizeof(ahbkhdr));
for (cur = ahbcur- >cur ; cur < (ahbcur- >cur + 10); cur++)

initahbk(cur);
cur- > abksubs = (ahbkhdr **) (cur+ 1);

(ahbcur- > cur+9)- > abksubs = NULL;
bkfree = ahbcur- > cur;
return ahbcur;

ahbkref allocahbko 1* allocate new header block, using free list *
{aIhbkref cur;

if (bkalloc ==NULL){

bkalloc =allocahkeepo;

bkcur =bkalloc;

if (bkfree ==NULL){

bkcur- >next = allocahkeepo;
(bkcur- > next)- > last = bkcur;
bkcur =bkcur->next;

if (bkcur = NULL)
printf("Major problem: bkcur null -- trying to recover\n");
bkcur = bkalloc;

cur = bkfree;
bkfree = (ahbkhdr *) bkfree- >abksubs;
cur- > abksubs = (ahbkhdr **) 0;
return cur;

ahbkref findahbk(name) /* find named block *
char *name;

{ahbkeep *kp;
ahbkref cur;
if (name = = NULL) return NULL;

#idef DEBUG
if (bkcur ==NULL) printf("Null block list\n");
#endif

165

kp = bkcur; /* search back to front (closer to Pascal scoping rules) *
while (kp ! = NULL) (

for (cur = kp->cur; cur < (kp->cur+1O); cur++)

#idef DEBUG

printf("find: looking for %s checking %s\n",name,cur->abkname);
if (strcmp(cur- > abkname, name)) return cur;

#else
if (strcmp(cur- > abkname,name)) return cur;

#endif
kp = kp- >last;

return NULL;

ahbkref findgrph(nodeid,cur)
/* find block containing node with acfgnum= nodeid *
int nodeid; /* node searched for */
ahbkref cur; 1* current search location *

{int i;
ahbkref temp = NULL;
if (nodeid == -1) return NULL;
if (cur = = NULL) return NULL;
if (findnode(nodeid,cur- > abkgrph) !=NULL){

clearnode(cur- > abkgrph);
return cur;

for (i =0; (i < cur- > abkn subs) && ((temp = findgrph(nodeid, cur- > abksubs[i]))

NULL); i ++);
clearnode(cur- > abkgrph); 1* clean up after search *
return temp; /* set by for loop either to NULL or to appropriate block *

166

void remahbk(cur) 1* deallocate header block, putting it on the free list *
ahbkref *cur; /* double indirection so we can set it to null *

{ if (cur = =NULL) return; 1* bad reference*/
if ((*cur) = = NULL) return; 1* nothing to deallocate *
initahbk(*cur);
(*cur)-.> abksubs = (ahbkhdr *)bkfree;
bkfree = (*cur);
(*cur) = NULL;

int grabint(finbuf)
FILE *f;
char *inbuf;

{ mt temp;
temp = -1;
fgets(inbuf,255 ,f); inbuf[strlen(inbuO)- 1] 'O'
if (sscanf(inbuf,"%d",&temp) != 1) temp = -1;
return temp;

void grabstr(f,s,n ,inbuf)
FILE *f;
char *S;
int n;
char *inbuf;

{fgets(inbuf,255 ,f); inbuf[strlen(inbuf)- 1] =\'

stmcpy(s,inbuf,n);

167

int numexit(root)
acfg *root;

{ mt excnt;
if (root= =NULL) return 1;
if (root- > marked) return 0;
root-> marked = 1;
if (root- > acfglft ==NULL && root- > acfgrt ==NULL) return 1;
excnt = 0;
if (rou- > acfglft !=NULL)
excnt =numexit(root- >acfglft);
if (root- > acfgrt ! =NULL)
excnt + = numexit(root- > acfgrt);
return excnt;

void makeexit(node)
acfg *nlode;

node- >acfgnum = exitid; exitid--;
node- >acfglnum = 1;
strcpy(node- > acfgtext, ")
strcpy(node- > acfgsumm,"WALKER added exit node");
strcpy(node- > acfglcnd, "false");
strcpy(node- > acfgrcnd. "fa'lse");
node- > acfglft =NULL;

node- > acfgrt =NULL;

node- > acfgncalls = 0;
node- >acfgcalls =0;

node-> marked =1;

node- > acfgtype =EMPTYSTMT:

168

void setexit(root,exnode)
acfg *root;
acfg *exnode;
{if (root= =NULL IIexnode ==NULL) return;

if (root- > marked ==0) return;
root-> marked = 0;
if (root- > acfglft = = NULL && root- > acfgrt = NULL && root !=exnode)
root- > acfglft = exnode;
else I

setexit(root- > acfglft,exnode);
setexit(root- > acfgrt,exnode);

void singleexit(root)
acfg **root;

{acfg *exnode;
if (numexit(*root) > 1){
exnode =allocacfgo;
m"akeexit(exnode);
setexit(*root,exnode);

clearnode(*root);

#idef DEBUG
#define ENDTEST(FilerefMsg) if (feof(Fileref)) {printf(Msg); return -1; }\

else strcpy(flterr,"")
#else
#define ENDTEST(Fileref,Msg) if (feof(Fileref)){strcpy(fltefr,Msg); return -1 ;}\

else strcpy(flterr,"")
#endif

int readacfg(f,hdptr)
FILE *f;
acfg **hdptr;

{ mt tmpindx;
acfg *nod3~e;
char inbufJ256];
bkname =NULL;
do {tmpindx = grabint(f,inbuf);

169

#ifdef DEBUG
printf("Read Node %d\n",tmpindx);

#endif
if (tmpindx = -1){

1* we've found the start of the next block *
bknanie = MYALLOC(strlen(inbuf)+ 3), /* 3 for insurance against *

1* overflow ~
strcpy(bkname,inbuf);

else
if ((((int) *hdptr) ==0) && ! feof(f)){

*hdpti = findacfg(tmpindx);
node = *hdptr;

else node = findacfg(umpindx);
if (node = = NULL) return 0;
ENDTEST(f,"End of file when expecting line number");
node- > acfglnum = grabint(finbuf);
ENDTEST(f,"End of file when expecting lptr"); tmpindx =
grabint(f,inbuf);
if (tmpindx = = -1) node- > acfglft = NULL;
else node- > acfglft = findacfg(tmpindx);
ENDTEST(f,"End of file when expecting rptr"); tmpindx =
grabint(f,inbuf);
if (tmpindx = = -1) node-> acfgrt = NULL;
else node-> acfgrt = findacfg(tmpindx);
ENDTEST(f,"End of file when expecting lcnd");
grabstr(f,node- > acfglcnd,MAX-COND,inbuf);
ENDTEST(f,"End of file when expecting rcnd");
grabstr(f,node- > acfgrcnd,MAXCQND,inbuf);
ENDTEST(f,"End of file when expecting ncalls");
node- > acfgncalls = grabint(finbuf);
if (node- > acfgncalls > 0) 1

node- > acfgcalls = (struct ahbkrec *
MYALLOC(node->acfgncalls * sizeof(ahbkref));
for (tmpindx = 0; tmpindx < node- > aefgncalls; trnpindx+ +){

ahbkref tmp;
ENDTEST(f, "End of file when expecting call name");
grabstr(f,inbuf,MAX NAME,inbuf);
tmp = node- > acfgcalls[tmpindx] = findahbk(inbuf);
if (tmp ==NULL)

170

#ifdef DEBUG
{printf("can't find routine %s\n",inbuf); return 1;

#else
{strcpy(flterr,"can't find routine'); return 1;

#endif

/* above line shouldn't happen *

/* allocate temporary storage for return pointers -- be generous *
/* -- reduce to actual later */

if (tmp- >abkret= =NULL)
tmp- > abkret =(acfg *)MYALLOC(50*sizeof(acfg *)

if ((tmp- > abkcurret % 50 ==0) && (tmp- > abkcurret >0))
tmp-> abkret = (acfg*)

MYREALLOC(tmp- > abkret, (50 + tmp- > abkcurret)*sizeof(acfg

tmp- >abkcret[tmp- >abkcurret+ +] = node;

else node- >acfgcalls = NULL;
ENDTEST(f,"End of file when expecting text");
fgets(inbuf,255 ,f);
inbuf~strlen(inbuf)- I] ='\'
strcpy(node- > acfgtext, inbuf);
ENDTEST(f,"End of file when expecting summary");
fgets(inbuf,255 ,O;
inbufllstrlen(inbuf)-lI] ='\'
strcpy(node- > acfgsumm, inbuf);
ENDTEST(f,"End of file when expecting node type");
node- >acfgtype = grabint(f,inbuf);

#ifdef DEBUG
printf("@(%d)' %s'\nL: %d R: %d\n" ,node- > acfglnum, node- > acfgtext,
((node- > acfglft = = NULL) ? -1: node- > acfglft- > acfgnum),
((node- > acfgrt= NULL) ? -lI node- > acfgrt- > acfgnum));

#endif

}while ((! feof(f)) && (bkname ==NULL));

singleexit(hdptr);
return 0;

171

int readfixed(fhdr)
FILE *f;
ahbkref hdr;

{ mt lenread;
int lendeci;
int readindx;
int tmpindx;
char inbuf[256];
if (bkname ==NULL) grabstr(f, hdr- >abkname, MAXNAME,inbuf);
else (

strcpy(hdr- > abkname, bkname);
MYFRBE(bkname);
bknaine = NULL;

ENDTEST(f,"read of name");
hdr- >abknumret = grabint(finbuf);
ENDTEST(f,"read of return");
grabstr(f,hdr- > abkreach ,MAXCOND,inbuf);
ENDTEST(f,"read of cond");
hdr- > abknsubs = grabint(finbuf);
ENDTEST(f,"read of nsubs");
lendeci = grabint(f,inbuf);
1* read in deci lines *
lenread = 0;
if (lendeci >0){

hdr- >abkdecl = (char *) MYALLOColendecl* 160);
/*too much, will trim later*/
for (readindx = 1; readindx < = lendecl; readindx + +){

ENDTEST(f,"read of deci. line");
fgets(inbuf,255 ,f);
for (tmpindx =0; tmpindx < strlen(inbuO); tmpindx + +)

hdr- >abkdeclolenread+ +1 = inbufltmpindx];
/*include \n at end of line*/

if (lenread>o(endecl* 160 - 40)) return -2; /* lines too long *

hdr- > abkdecl = (char *)MYREALLOC(hdr- > abkdecl,lenread + 1);
/*trim storage*/

else hdr- > abkdecl = (char *)MYALLOC(1);
bdr-> abkdecl~lenread ++] =\'

/* allocate return location storage ~
if (hdr- >abknumret>0) I

172

if (hdr- > abkret ==NULL) /* no calls from parent *
hdr- > abkret =(acfg *) MYALLOC((hdr- > abknumret)*sizeof(

acfg *));
else /* trim space from overestimate parent uses to actual needs *

hdr- >abkret = (acfg **)
MYRBALLOC(hdr- >abkret,(hdr- >abknumret)*sizeof(acfg *)
1* abkcurret is initialized to 0 and incremented on each call *
if (hdr- >abkc-urret > hdr- >abknumret) return 4; I* too many calls *
for (tmpindx = hdr- > abkcurret; tmpindx < hdr- > abknumret; tmpindx + +)

bdr- > abkret[tmpindx] = NULL;

else hdr- > abkret = NULL;
/* allocate submodule storage *
if (hdr- > abknsubs > 0) 1

hdr- > abksubs = (ahbkhdr *) MYALLOC(hdr- > abknsubs *

sizeof(ahbkref));
for (tmpindx = 0 ; tmpindx < hdr- > abknsubs; tmpindx + +)

*(hdr-.> abksubs +tmpindx) = allocahbko;

/* read in submodule names *
for (tmpindx = 0; tmpindx < hdr- > abknsubs; tmpindx + +){

ENDTEST(f,"read of sub name");
grabstr(f, (*(hdr- > abksubs +tmpindx))- > abkname,MAXNAME, inbuf);

#ifdef DEBUG
printf("Read in submodule ref of % s\n" , (*(hdr- > abksubs + tmpindx))- > abkname);

#endif

return 0;

173

int readreacher(fhdr)
1* Read reacher-generated file f to get data for block header hdr; *
/* return -1 if problem with read, return 0 if redid is successful *
FILE *f; 1* assumed to already be opened */
ahbkref hdr; 1* assumed to already be initialized *

{ char inbuf[80];
int tmpindx;

#ifdef DEBUG
acfg *node;

#endif

if (f ==NULL) return -1; /*n ie ora from *
if (hdr == NULL) return -1; /* no place to copy to *
ENDTEST(f, "test");
/* read in fixed data: name, numret, reach, nsubs, number of decl lines;*/
/* allocate return storage and submodule storage; ~
/* read in decl. lines and subroutine names *
if (readfixed(fhdr)! =0)

#ifdef DEBUG
{printf("readflxed ended abnormally\n");

return 3;)
#else

return 3;
#endif
#ifdef DEBUG

printf("Read block %s\n",hdr- >abkname);
#endif

/* read in module acfg data *
#idef DEBUG

if (readacfg(f,&(hdr- >abkgrph))! =0){
printf("readacfg ended abnormally\n");
return 3;

node = hdr- > abkgrph;
printf("readacfg ended nornially\nStart of acfg:\n");
printf(*#%d @(%d)' %s'\nL: %d R: %d\n" ,node- > acfgnum,
node- > acfglnum,node- > acfgtext,
((node- >acfglft =NULL) ? -1: node- >acfglft- >acfgnum),
((node- >acfgrt ==NULL) ? -l I node- >acfgrt- >acfgnum));
node = ((node-> acfglft! =NULL) ? node-> acfglft:
(node-> acfgrt! =NULL) ? node-> acfglft:NULL);

174

if (node! =NULL)
printf("#I%d @(%d)' %s'\nL: %d R: %d\n" ,node- > acfgnum,

node- > acfglnum,node- > acfgtext,
((node- > acfglft = =NULL) ? -1: node- > acfglft- > acfgnum),
((node- > acfgrt = NULL) ? -1: node- > acfgrt- > acfgnum));

#else
if (readacfg(f, &(hdr- > abkgrph))! = 0) return 3;

#endif
1* read in submodules*/
if (hdr- > abknsubs > 0)

for (tmpindx =0; tmpindx < hdr- >abknsubs; tmpindx + +){
ENDTEST(f, "test");
if (readreacher(f, hdr- > abksubs[tmpindx]) !=0)

#ifdef DEBUG
{printfQ'readreacher ended abnormally\n");
return 3;

#else
return 3;

#endif

else fgets(inbuf,80,f); /* comment line *
return 0; /* successfully read *

#undef ENDTEST
static acfg *terminal =NULL;

void dumpacfginfo(f, root)
FILE *f;
acfg *root;

{ mt tmpindx;
if (root = = NULL) return;
fprintf(f, %d\n %d\n", root- >acfgnum, root- > acfglnum);
root-> marked = 1;
ii (root- >acfglft = = NULL) fputs("-l\n",f);
else fprintf(f, "%d\na,root- > acfglft- > acfgnum);
if (root->acfgrt == NULL) fputs(*-l\n",f);
else fprintf(f, %d\n" ,root- >acfgrt- >acfgnum);
fputs(root- > acfglcnd,f); fputc('\n', f;
fputs(root- >acfgrcnd,f); fputc('\n' ,O;
fprintf~f," %d\nu ,root- > acfgncalls);

175

for (tmpindx=O0; tmpindx < root- > acfgncalls; tmpindx + +){
fputs(root- > acfgcalls[tmpindx]- > abkname,f);
fputc('\n'j,);

fptI ot cget) pt(\')
fputs(root- >acfgtext,f); fputc(\n');

fprintf(f, "% d\n" ,root- > acfgtype);

void writeacfg(f, root)
FILE *f;
acfg *root;

{if (root = = NULL) return; I* no data to write*
if (root- > marked) return; /* loop back, we've already done this node*/
if (root- > acfglft = = NULL && root- > acfgrt = = NULL){

if (terminal ! = NULL && root ! =terminal) I
fprintf(stderr, "Illegal graph in writeacfg (two terminal nodes)\n");
exit(1);

terminal = root; I* save for output at end *
return;

dunipacfginfo(f,root);
fflush(O);
if (root- > acfglft! =NULL) writeacfg(f, root- > acfglft);
if (root- > acfgrt! =NULL) writeacfg(froot- > acfgrt);

void writereacher(f, proc)
FILE *f;
alibkref proc;

{ mt tmpctr, tmpidx;
fputs(proc- >abknamejf); fputc('\n',f);
fprintf(f," %d\n',proc- >abknumret);
fputs(proc- >abkreach, f); fputc('\n', f;
fprintf(f," %d\n",proc- >abknsubs);
tmpctr = 0;
if (proc- > abkdecl! =NULL)(

for (trnpidx = 0; tmpidx < strlen(proc- > abkdecl); tmpidx + +)
if (proc- > abkdecl[tmpidx] =='Wn) tmpctr + +;
fprintf(f,"%d\n" ,tinpctr);
fprintff,"%s",proc- > abkdecl);

176

for (tmpidx=O0; tmpidx < proc- > abknsubs; tnipidx + +)
fputs(proc- > abksubs[tmpidx]- > abkname,t);
fputc('\n' ,f);

else fputs("O\n",f);
fflush(f);
terminal = NULL; /* clear any prior traversal *
writeacfg(f,proc- > abkgrph);
dumpacfginfo(f,terminal); /* dump sink node last *

fflush(f);
clearnode(proc- > abkgrph);
for (tmpidx=O0; tmpidx < proc- > abknsubs; tmpidx + +)
writereacher(f,proc- > abksubs[tmpidx]);

177

/* acfg.c -- annotated control-flow graph management functions for walker *

1* T. Shimeall July 1990 (from falter) *

#define ACFG
#include < stdio.h >
#include "walker.h"

typedef struct acfgkrec{
acfg *cur;
struct acfgkrec *next;
struct acfgkrec *last;

Iacfgkeep;

static acfgkeep *ndalloc = NULL; /* allocated acfg nodes *

static acfgkeep *ndcur = NULL; /* last entry of nodes list *
static acfg *acfgfree = NULL; /* free node blocks */

acfgkeep *allocndkeepo 1* allocate entry of ndalloc *

acfgkeep *acgcur;
acfg *cur;
acgcur = (acfgkeep *) MYALLOC(sizeof(acfgkeep));
acgcur- >next =NULL;

acgcur-> last =NULL;

acgcur- > cur =(acfg *) MYALLOC(10*sizeof(acfg));
for (cur = acgcur->cur ; cur < (acgcur->cur + 10); cur++)(

cur->acfglft = (acfg *) (cur+ 1);

(acgcur- >cur+ 9)- >acfglft = NULL;
acfgfree = acgcur->cur;
return acgcur;

void freeacfg(node) 1* put node on free list *
acfg **node;

(*node)-. > acfglft = acfgfree;
(*node)- >acfgrt = NULL;
acfgfree = *node;
acfgfree- >acfgncalls =0;

*node = NULL;

178

acfg *allocacfgo /* allocate new acfg node, using free list *

acfg *cur;
if (ndalloc = = NULL)

ndcur = ndalloc = allocndkeepo;

if (acfgfree ==NULL){

ndcur- > next = allocndkeepo;
(ndcur- > next)- > last = ndcur;
ndcur =ndcur- > next;

cur = acfgfree;
acfgfree = (acfg *) acfgfree- > acfglft;
cur-> acfglft =(acfg *) 0;
cur- > marked =0;

return cur;

/* find (or create) acfg node with id given parametrically *
acfg *flndacfg(id)
int id;

acfg *cur;
acfgkeep *kp;

if (id = = -1) return NULL;
if (ndalloc ! = NULL){

kp = ndalloc;
while (kp ! = NULL){

for (cur = kp- >cur; cur <= (kp- >cur + 9); cur+ +)
if (cur- > acfgnum ==id) return cur;
kp = kp- >next;

cur =allocacfgo;
cur- > acfgnum = id;
return cur;

179

acfg *findnode(nodeid, root) /* find node in graph *
int nodeid;
acfg *root;

acfg *lftret;
if (root = = NULL) return NULL;
if (nodeid = = -1) return NULL;
if (root- > marked) return NULL; /* already checked this *
if (root- > acfgnum = = nodeid) return root;
root-> marked = 1;
if ((lftret = flndnode(nodeid, root-> acfglft))! =NULL) return lftret;
return findnode(nodeid,root- > acfgrt);

void clearnode(root) 1* clear marking after graph traversal *
acfg *root;

if (root ==NULL) return;
if (! root-> marked) return;
root- > marked = 0;
clearnode(root- > acfglft);
clearnode(root- > acfgrt);

180

/* TITLE : faltwin.c
* AUTHORS : Vicki Abel and Medio Monti
* DATE : 20 October 1990
* REVISED : 12 December 1990
* SYSTEM : NPS SUN TAURUS
* LANGUAGE : SunView and C
* COMPILER : Unix cc
* DESCRIPTION : This program is the interface for the failure region
* testing tool FALTER. It is similar in design and construction to the WALKER
* interface but functions to serve FALTER's needs.
*/

/* These are the SunView header files needed for this program. */
#define MAIN /* Necessary for the acfg graph */
#include < suntool/sunview.h >
#include < suntool/panel.h >
#include < suntool/textsw.h >
#include < suntool/tty.h >
#include <suntool/canvas.h>
#include < suntool/icon.h >
#include < suntool/scrollbar.h >
#include < pixrect/pr_line.h >
#include < stdio.h >
#include < math.h >

/* These macros contain declarations necessary for drawing the
* acfg graph. These header files are from Dr. Shimeall's testing
* tools.
*/

#ifdef ACFGGRAPH
#include "walker.h"
#include "ablock.h"
#include "acfg.h"
#endif ACFGGRAPH

#define NUM POINTS 1000 /* for President Bush */
#define XSTAT 200
#define YSTART 100
#define XDONE 200
#define YDONE 200
#define POSMAX 200

181

/* Presently necessary for defining a high resolution screen */
#ifdef HIGHRES
#define STARTX 200
#define STARTY 50
#define RADIUS 10
#define BASEFRAMEEX 525
#define BASEFRAMEY 205
#define ACFGHEIGHT 794
#define ACFGWIDTH 500
#define CANVASHEIGHT 1400
#define CANVASWIDTH 900
#define TEXTWINHEIGHT 394
#define TEXTWINWIDTH 495
#define TrYWINHEIGHT 394
#define TTYWINWIDTH 495
#define PANELWINHEIGHT 100
#define PANELWINWIDTH 1000
#define PANELXGAP 10
#define FONT 1
#define XDISP 25
#define YDISP 25
#endif HIGHRES

#ifdef LOWRES
#define STARTX 150
#define STARTY 25
#define RADIUS 15
#define BASEFRAMEX 365
#define BASEFRAMEY 163
#define ACFGHEIGHT 476
#define ACFGWIDTH 350
#define CANVASHEIGHT 540
#define CANVASWIDTH 890
#define TEXTWINHEIGHT 236
#define TEXTWINWIDTH 347
#define TTYWINHEIGHT 236
#define TTYWINWIDTH 347
#define PANELWINHEIGHT 100
#define PANELWINWIDTH 702
#define PANELXGAP 5
#define FONT 0
#define XDISP 15
#define YDISP 12

182

#endif LOWRES

1* these define pixrect ptrs *
#define NULLPR ((Pixrect *) 0)

/* vlist is an array of structures prpos for the circle *
static struct prpos vlist0[NUMPOINT];

/* type declarations *
Frame base -frame;
Panel controlypanel;
Canvas acfg cavas;
Textsw text sw;
Tty ttysw;
Panel item falter menu,

falter-string item;

Pixfont *bold;
/*lpixwin object *

Pixwin *pw;

int i,j;
int startval = XSTART;
mnt startyval = YSTART;
int flnishxval = XDONB;
int finishyval = YDONE;
float angle; /* for circle computations *
float increment; /* for circle computations *
int counter = 0; /* for circle computations *
int falter-run = 0;

/* name of file to load into text subwindow ~
char *file-name;
#idef ACFGGRAPH
FILE *infile; 1* Logical file name for acfg graph *
#endif ACFGGRAPH

#ifdef ACFGGRAPH
/* Graph object declarations *
int curx;
int cury;
int finalx;

183

int finaly;
int rootid;
1* structure for an (x,y) coordinate *
typedef struct

int x;
nt, y;

)POINT;
/* Array of the above structures *
POINT position[200];
int TOS = 0; /* Top of Stack *
acfg *curnode; /*ptr to acfg *
ahbkref curbiock; /*ptr to hdr structure *
acfg *stack[200]; /*stack of acfg structures *
#endif ACFGGRAPH

Icon falter -icon;
Icon falter-menu-icon;

1* These procedures are notified by the buttons. *
static void call addo;
static void call~annotateO;
static void call erfro;
static void call-error loco;
static void callget efro;
static void call -implicationo;
static void call-leftO;
static void calljgotoo;
static void call nodeo;
static void calljprioro;
static void call righto;
static void call-set -valueo;
static void call_error _typeo;
static void call violation-setO;

#idef ACFGGRAPH
static void drawlineo; /* For drawing arcs between nodes *
static void drawcircleo; /* For drawing the nodes *
#endif ACFGGRAPH

static void falterjroco; /* process for falter menu *

static short icon-imageD =

184

include "falter. icon"

mprstatic(iconjixrect, 64, 64, 1, icon-image);

static short falter..arrayfl
#include *falter-menu. icon"

mprstatic(falterjixrect, 64, 64, 1, falter _array);
#define ADDEDEXIT NODE 999999
int sbifts[POSMAX];

void subtreeshift(root,disp)
acfg *root;
int disp;
(if (root ==NULL) return;
if (root- > acfgnum = = ADDEDEXIT -NODE) return;
shifts~root- > acfgnum - rootid] + = disp;
subtreeshift(root- > acfglft, disp);
subtreeshift(root- > acfgrt,disp);

mnt calcoffsets(root)
acfg *root;
{int leftval, rigbtval;

if (root= =NULL) return 0;
if (root-> marked = = 1) return 0; 1* crossovers possible *
root- >marked = 1;
if (root-> acfgnum == ADDED EXIT NODE)

shifts[POSMAX-lJ =0;

else{
shifts[root- >acfgnum - rootid] = 0;

if (root- > acfglft ==NULL) return 0;
if (root- > acfgrt ==NULL) return calcoffsets(root- > acfglft);
leftval = calcoffsets(root- > acfglft);
rightval = calcoffsets(root- > acfgrt);
if (leftval >0)

if (rightval > 0){
subtreeshift(root- >acfglft, - (leftval+rigbtval+ 1)/2);
subtreeshift(root- >acfgrt, (leftval+rightval+ 1)12);

185

else{
subtreeshift(root- >acfgrt, 1 + leftvall2);
subtreeshift(root- > acfglft, -(1+ leftvall2));

else{
subtreeshift(root- >acfglft, - (rightval + 2)/2);
subtreeshift(root- >acfgrt, (rightval+2)/2);

return (int) l.5*oeftval+rightval)+1;

void drawgraph(root)
acfg *root;
{ mt done-draw = 0;

curnode = root;
rootid = root- > acfgnum;
curx = STARTX;
cury = STARTY;

calcoffsets(root);
clearnode(root);

pw-writebackground(pw,O,O,
(pw- >pwjixrect)- >pr _size.x,(pw- >pwpixrect)- >pr _size. yPIX_CLR);

do{

#idef DEBUG
printf(" Drawing node %d (%d) into pos %d\n",curnode->acfgnum,

cumodecurnode- > acfgnum-rootid);
#endif DEBUG

if (curnode ==NULL){

printf(" ran off edge of graph\n");
break;

if(curnode- > acfgrt !=NULL){

#idef DEBUG
printf(" Pushing node %d (%d) into stack %d\n",curnode->acfgnum,curnode,TOS);
#endif DEBUG

186

stack[TOS] = curnode;
TOS ++;
finaix = curx - XDISP +

((curnode- > acfglft- > marked = 1) ? 0:
((curnode- > acfglft- > acfgnum = ADDED EXrT NODE) ?0:
shifts[curnode- > acfglft- > acfgnum-rootid]));

finaly = cury + YDISP;
drawline(curx, cury, finaix, finaly);
drawcircle(curx, cury);
if (curnode- > acfgnum ==ADDEDEXITNODE){

position[POSMAX-1J.x = curx;
position[POSMAX-1].y = cury;

else{
positionlcurnode- >acfgnum-rootid].x = curx;
position~cumode- >acfgnum-rootid].y = cury;
curx = finalx;
cury = finaly;
cumnode-> marked = 1;

#ifdef DEBUG
printf(" Advancing left to node % d\n",curnode- > acfglft);
#endif

cumnode = curnode->acfglft;

else if(curnode- > acfglft ==NULL && TOS > 0){
#ifdef DEBUG
printf(" Popping node %d (%d) from stack %d\n",stackI.TOS-1]->acfgnum,

stack[TOS- 1J,TOS-1);
#endif DEBUG

TOS-;
curnode = stack[TOS];
finalx = curx + XDISP +

((cumnode- > acfgrt- > marked ==1) ? 0:
((curnode- > acfgrt- > acfgnum ==ADDED-EXIT NODE) ? 0:
shifts~curnode- > acfgrt- > acfgnum-rootid]));

finaly = cury + YDISP;
if (curnode- > acfgnum = = ADDEDEX[TNODE){

position[POSMAX-1].x = curx;
position[POSMAX-1].y = cury;
drawcircle(curx, cury);

187

else {
position~curnode- >acfgnum-rootidj.x = curx;
position[curnode- >acfgnum-rootid].y = cury;
drawline(curx, cury, finaix, finaly);
drawcircle(curx, cury);
curx = finaix;
cury = finaly;

#ifdef DEBUG
printf(w Advancing right to node %d\n",curnode- >acfgrt);
#endif

curnode =ctrnode- >acfgrt;

else if (curnode- > acfglft !=NULL)
if (curnode- > acfgnum !=ADDEDEXiTNODE){

#ifdef DEBUG
printf(" Advancing down to node %d\n",curnode- >acfglft);
#endif

cumnode = curnode- >acfglft;
finaix = curx;
finaly = cury + YDISP;
if (curnode- > acfgnum = = ADDEDEXITNODE){

position[POSMAX-1].x = curx;
position[POSMAX-1].y = cury;
drawcircle(curx, cury);

else{
positior'(curnode- >acfgnum-rootid].x = curx;
position[curnode- >acfgnum-rootid] .y = cury;
drawline(curx, cury, finaix, finaly);
drawcircle(curx, cury);
cury = finaly;

else (done-draw = 1; I

if (curnode! =NULL)
while((!done draw) &&

((curnode- > acfgnum ==ADDEDEXI_NODE) I I (curnode- > marked

&&(TrOS >0)){

188

#idef DEBUG
printf(' Popping node %d (%d) from stack %d\n" ,stacJ4TOS-1]- >acfgnum,

stack[TOS- l],TOS- 1);
#endif DEBUG

curnode = stack[TOS-1];
if (curnode, = = NULL) (done-draw = 1; curnode =root; break;)
if (curnode- > acfgnum = = ADDEDEXiTNODE)

curx = position[POSMAX].x;
cury = position[POSMAX].y;

else
curx = position[curnode- >acfgnum-rootid] .x;
cury = position[curnode- >acfgnum-rootid] .y;

if (curnode- >acfgrt = = NULL) {done-draw =1; break;)
finaix = curx + XDISP +

(cumode- >acfgrt- >marked ==1) ?0:
((cumode- > acfgrt- > acfgnum = =ADDEDEXIT NODE) ?0:
shifts[curnode- > acfgrt- > acfgnum-rootid]));

finaly = cury + YDISP;
drawline(curx, cury, finaix, tinaly);
curx = finalx;
cury = finaly;

#ifdef DEBUG
printf(" Advancing remaining link to node % d\n" ,curnode- > acfgrt);
#endif

cumode = cumode- >acfgrt;
TOS--;9

else {done-draw = 1;
curnode = root;

}while (!done-draw && ((curnode- > acfglft !=NULL) I
(curnode- > acfgrt !=NULL) I I
(TOS > 0)));

if (!done-draw) drawcircle(curx, cury);

1* ------ ------ MAIN PROGRAM-------------

main(argc, argv)

189

int argc;
char *argv[];{
static int npts[1] = (NUM POINTS);

/* assign second item of input line to filename to display it *1
/* in the text subwindcw */
file-name = argv[l];

falter-icon - icon_create(ICON_IMAGE, &iconpixrect, 0);

/* this is the base frame for the application */
baseframe - window create(NULL, FRAME,

WINX, BASEFRAMEX, /* sets x position relative to owner *
WINY, BASEFRAMEY, /* sets y position relative to owner */
FRAMELABEL, "Falter Window 1.0", /* frame label */
FRAMEICON, faltericon, /* icon used */
FRAMEARGS, argc, argv, /* main args */
0);

/* this is a graphics subwindow */
acfg canvas = wincowcreate(base frame, CANVAS,

WINHEIGHT, ACFGHEIGHT,
WIN-WIDTH, ACFGWIDTH,
CANVASAUTOEXPAND, FALSE,
CANVASAUTOSHRINK, FALSE,
CANVAS-WIDTH, CANVASWIDTH,
CANVAS-HEIGHT, CANVASHEIGHT,
WINVERTICALSCROLLBAR, scrollbar create(

SCROLLPLACEMENT, SCROLLWEST,
SCROLLPAGEBUTrONS, FALSE,
0),

WIN HORIZONTALSCROLLBAR, scrollbarcreate(
SCROLLPLACEMENT, SCROLL-SOUTH,
SCROLLPAGEBUTrONS, FALSE,
0),

0);
#ifdef ACFGGRAPH
#ifdef DEBUG
printf("Ready to start graph.c\n");
#endif DEBUG

/*--------- graph.c main code ---
/* reacherout is where we find the textual representation of the

190

* control flow graph. We must put it into the logical file to use
* use it.
*/

infile = fopen("walker_out", "ro);
if (infile = = NULL) infile = fopen(reacher-out,'r);
if (infile = = NULL) (

fprintf(stderr,"No walkerout or reacher-out file\n");
exit(I);)

ahlen = 0;
/* Dynamically allocate memory for the logical file and put it into
* memory. The function readreacher is part of the failure region
* testing tools. We used it with our program with Dr. Shimeall's
* permission.
*/

while(! feof(infile)) {
int i;

ahlen + +;
i = sizeof(ahbkref);

if(ahlen > 1) {
ahprocs = (ahbkhdr **)MYREALLOC(ahprocs, ahlen*i);}

else {
ahprocs = (ahbkhdr **) MYALLOC(i);

}

*(ahprocs + ahlen-1) = allocahbkO;

readreacher(infile, *(ahprocs + ahlen-1));

ifdef DEBUG
printf("Ready to draw graph\n");
#endif DEBUG

/* initialize */
curblock = *(ahprocs + ahlen-1);
curnode = curblock- > abkgrph;

if (curnode = = NULL) {
fprintf(stderr,*No nodes in walkerout main block\n*);
exit(l);

191

1* Define pw and set up circle coordinates *
pw = canvas-ixwin(acfg canvas);
increment =2 * MPI11 NUM POINTS;
for(angle =0; angle < (2 * MIPI); angle + = increment)

vlist0[counter].x = RADIUS * cos(angle);
vlistO[counter].y = RADIUS * sin(angle);
counter+ +;

drawgraph(curblock- > abkgrph);
#idef DEBUG
printf("Ready to initialize graphics panelhn");
#endif DEBUG

#endif ACFGGRAPH

/* this is a text subwindow *
text sw = window create(base_frame, TEXTSW,

WINRIGHTO (F, acfg~canvas,
WINHEIGHT, TEXTINHEIGHT,
WIN WIDTH, TEXT WIN WIDTH,
/* word wrap vice default */
TEXTrSWLINEBREAK ACTION, TEXTSWWRAPATWORD,
0);

1* this is a tty subwindow *
ttysw = window create(base frame, TTY,

WINBELOW, text sw,
WINRIGHT-OF , acfg canvas,
WINHEIGHT, TTYWINHEIGHT,
WIN -WIDTH, TrYWLNWLDTH,
0);

/* this is a button subwindow *
controljpanel = window-create(base frame, PANEL,

WIN BELOW, acfg_canvas,
WIN7HEIJGHT, PANEL WINHEIGHT,
WIN WIDTH, PANEL WIN WIDTH,
WINX, 0,
PANELITEMXGAP, PANELXGAP,

192

0);

/* puts file in the text-window */
window set(text sw, TEXTSWFILE, file-name, 0);

/* Falter buttons and input *

falter menu = panel create item(controlpanel,
PANELCHOICE, PANEL_CHOICE STRINGS,

"Run",
"Help",
"Save",
"Quit",
0,

PANELDISPLAYLEVEL, PANELNONE,
PANELLABELIMAGE, &falter_pixrect,
PANELNOTIFYPROC, falter_proc,
0);

/* Add Button */
bold = pf open("/usr/lib/fonts/fixedwidthfonts/screen.b.16");
panel createitem(control.panel, PANELBUTTON,

PANEL NOTIFY PROC, calladd,
PANEL_LABELIMAGE, panel_buttonimage(

controlpanel, "Add Fault", 11, bold),
0);

/* Annotate Button */

panel create item(control_panel, PANELBUTTON,
PANEL NOTIFYPROC, callannotate,
PANEL LABELIMAGE, panel button image(

control, panel, "Annotate", 11, bold),
0);

/* Error Button */

panel create item(controlpanel, PANELBUTTON,
PANELNOTIFYPROC, call error,
PANELLABELIMAGE, panelbuttonimage(

controljanel, "Error", 11, bold),
0);

193

1* FLOC to LocCond Button *

panel create item(controljpanel, PANEL -BUTTON,
PANEL-NOTIFY-PROC, call-error boc,
PANELLABELIMAGE, panel button image(

control~pnel,- 'Error Loc.-, -11, bold),

1* using entry indicated by ErrNum *I

panel create item(controljael, PANEL 'BUTTON,
PANELNOTIFYPROC, ca11,get-error,
PANEL_-LABELIMAGE, panel button image(

controlpanel, "Get Error", It, bold),
0);

/* Implication Button *

panel create item(controlpanel, PANEL_-BUTTON,
PANELNOTIFYPROC, call-implication,
PANEL_-LABELIMAGE, panel button-image(

controlpanel, "Implication", 11, bold),
0);

/* Left Button *

panel create item(controljpanel, PANEL BUTTON,
PA'NELJNOTIFYPROC, call left
PANELLABELIMAGE, panel button image(

controljpanel, "Left", 11, bold),
0);

1* Module Button ~

panel create item(controljanel, PANEL-BUTTON,
PANELNOTIFYPROC. caHgoto,
PANEL -LABELIMAGE, panel button image(

controljanel, "Goto", 11, bold),
PANELITEM-X, 77,
PANELITE-MY, 35,
0);

/* Node Button *

194

panel create item(control_panel, PANEL-BUTTON,
PANEL NOTIFY PROC, call-node,
PANELLABEL_IMAGE, paneLbuttonimage(

controlpanel, "Node", 11, bold),
0);

/* Prior Button */

panel create_item(controlanel, PANEL BUTTON,
PANELNOTIFYPROC, callprior,
PANEL LABELIMAGE, panel button image(

control.panel, "Prior", 11, bold),
0);

/* Right Button */

panel createitem(controlpanel, PANELBUTTON,
PANEL NOTIFY PROC, call_right,
PANELLABELIMAGE, panelbuttonimage(

control-panel, "Right", 11, bold),
0);

/* Set Value Button */

panel create item(controlpanel, PANELBUTTON,
PANEL NOTIFYPROC, call set value,
PANELLABELIMAGE, panelbuttonimage(

controlpanel, "Set Value", 11, bold),
0);

/* Type Button */

panelcreateitem(controlpanel, PANELBUTTON,
PANEL NOTIFYPROC, callerror type,
PANEL LABEL_IMAGE, panel button image(

control-panel, "Error Type", 11, bold),
0);

/* Violation Button */

panel create item(controlpanel, PANEL BUTTON,
PANEL NOTIFYPROC, callviolation set,
PANELLABEL_IMAGE, panelbuttonimage(

195

control janel, "Violation", 11, bold),
0);

1* This is the input string code for falter *
falter string item = panel -create item(controlpanel,

PANEL-TXT PANEL,_LABEL STRING,
"Falter input string:",
PANELVALUE DISPLAY LENGTH, 50,
PANEL-iTEMX, 94,
PANELITrEMY, 70,
0);

window fit(base_frame);

window-main-loop(baseframe);

exit(0);

static void
call -addo

char falter string buffer(8 1];
sprintf(falter -string buffer, "a\n",

panelget - alue(falter -string _item));
if (falter -run = = 1) (
ttyswinput(tty_sw, falter string buffer, strlen(

falter string__buffer));

panel_set_value(falter string item, ")

static void
call -annotateO

char falter-stringbuffer[81J;
sprintf(falter string buffter, "c % s\n",

panelgetvalue(falter -string item));
if (falter -run ==l1){(
ttys iut(tty sw, falter string buffer, strlen(

falter-string buffer));

196

panelset value(falter string item, ")

static void
call -erfro

char falter string_ buffer[8 1];
sprintf(falter _string__buffer, "e %s\n",

panelget..yalue(falter _string item));
if (falterjrun = = 1) (
ttysiw nput(tty sw, falter string_ buffer, strlen(

falter string_ buffer));

panel-set value(falter string item, H)

static void
call error loco

char falter string buffer[8 1];
sprintf(falter string buffer, "f %s\n",

panelgetvalue(falter -string item));
if (falter-run = = 1
ttyswinput(ttysw, falter -stringbuffer, strlen(

falter string_ buffer));

panel set value(falter-stdrng item, ")

static void
callget-erfro

char falter string buffer[8 1];
sprintf(falter string biuffer, Hg %s\n",

panelget .value(falter stringitem));
if (falter -run = = 1
ttyswinpt(tty_.sw, falter stringbufrsten

falttr string buffer));

panelset value(falter string item, H)

static void

197

call implicationo

char falter-stringjbuffer[8 1];
sprintf(falter -stringjbuffer, "i %s\n",

panelgetvalue(falterstningitem));
if (falter -run = =1
ttyswjinput(tty sw, falter string-buffer, strlen(

falter string bfer));_fuf
panel set value(falter _string item,HH)

static void
call -lefto

char falter-string_ buffer[8 1];
sprintf (falter -string buffer, Hl\nH,

panelget -value(falter string item));
if (falter-run = = 1) {
ttyswinput(ttysw, falter -string_ buffer, strlen(

falter string_bOuffer));

panel set value(falter-string item,HH)

static void
call-gotoo

char falter-in -value[8 1];
char falter stringbuffer[81];
strcpy(falter-in-value,panel..get value(falter _string item));
sprintftfalter string_ buffer, Hm %s\n",falter-in-value);
curblock = findahbk(falter in value);
if (falter -run = = 1 && curblock ! = NULL)
ttyswinput(ttysw, falter -stringbuffer, strlen(

falter string_buffer));

else (curbiock = *(ahprocs+alilen-1);
/* eventually, we'll put a pop-up error message here *

drawgraph(curblock- > abkgrph);
panel set value(falter stringt item,HH)

198

static void
call -nodeo

char falter stringbuffer[8 1];
sprintftfalter string bfer, "n %s\n",

panelgetyalue(falterstringitem));
if (falter-run = = 1) 1
ttyswijnput(ttysw, falter stringjbuffer, strlen(

falter string bOuffer));

panel set value(falter string item,)

static void
call ,rioro

char falter string__buffer[8 1];
sprintf(falter-string~buffer, "p\n",

panelget value(falter string item));
if (falter-run = = 1) j
ttyswinput(ttysw, falter-string buffer, strlen(

falter stringbuffer));

panel set value(falter-string item, ")

static void
call righto

char falter -stringbuffer[8 1];
sprintf(falter-string buffer, "rAn",

panelgevalue(falter -string item));
if (falter -run ==1){

ttyswinput(ttysw, faiter -string buffer, strlen(
falter string bfer));

panel set value(falter string item, ")

static void
call -set -valueO

char falter string buffer[8 11;

199

sprintf(falter_string bfer, s",
panelget value(falter string item));

if (falter-run 1)
ttysw _input(tty SW, falter string_ buffer, strlen(

falter string-buffer));

panel set _value(falter _string item, N)

static void
call- error-typeo

char falter -stringjbuffer[8 1];
sprintf(falter -string__buffer, "t % s\n*,

panelget -value(falter -string item));
if (falter -run = =1
ttysW input(tty sw, falter -string bOuffer, strlen(

falter-string_ buffer));

panel set value(falter-string item, U)

static void
call -violation seto

char falter string_ buffer[8 1];
sprintf(falter -string_ buffer, "v %s\n",

panelget -value(falter -string item));
if (falter -run ==l1){1
ttyswinpt(tty sw, falter string buffer, strlen(

falter string_ buffer));

panel set value(falter-string item, ")

static void
falterj-proc(item, value, event)

Panel-item item;
mnt value;
Event *event;

char falter string_ buffer[8 1];

200

if(eventaction(event)==
MS RIGHT && event-is down(event)){
switch(value)

case 0:
sprintf(falter string_ buffer, -falter %s\n",

panelget value(falter _string item));
if (falter run = = 0) (
ttysw input(tty sw, falter .string_ buffer, strlen(

falter string buffer));
falter-run = 1;

panel set value(falter stringitem, 0);
break;

case 1:
sprintffalter_string_ buffer, "h\n",

panelgetvalue(falter-string item));
if (falter run ==1){

ttyswinput(tty-sw, falter -string -buffer, strlen(
falter string_.buffer));

panel set value(falter-string item, ")
break;

case 2:
sprintf(falter string bfer, *w % s\n",

panelget value(falter string item));
if (falter-run 1)
ttysw input(tty sw, falter -string_ buffer, strlen(

falter string buffer));

panel set value(falter string item, ")
break;

case 3:
sprintf(falter string buffer, wq\nw,

panelgevalue(falter_string item));
if (falter-run = =1
ttysw input(ttysw, falter string_.buffer, strlen(

falter string_ buffer));
falter-run = 0;

panel set value(falter string item, ")
sprintffalter_string buffer, "clear~n",

panelgetvalue(falter-string item));
ttysw-input(tty-sw, falter-string__buffer, strlen(

201

falter string buffer));
break;

#ifdef ACFGGRAPH
static void
drawline(curx,cury,finalx,finaly)
int curx, cury, finalx,finaly;

#ifdef DEBUG
printf("Begin Drawline Function\n");
printf(*%d %d %d %d\n", curx, cury, finaix, finaly);
#endif DEBUG

pwvector~pw, CUrM, cury, finalx, finaly, PIXSRC, 1);

#ifdef DEBUG
printf("Leaving drawline function\n");
#endif DEBUG

static void
drawcircle(curx, cury)
int curx;
int cury;
I

static mnt npts[1] = {NUMPOINTS};
#ifdef DEBUG
printf("Begin drawing Circle\n");
#endif DEBUG

pwpolygon 2(pw, curx, cury, 1, npts, vlistO, PIXCLR, NULLPR, 0,
0);

for(i = 0; i <(NUM_;POINTS - 1); i ++)
pwvector(pw, vlist0[i].x + curx, vlist0[i].y + cury,
vlistO[i+1J.x + curx, vlist0[i+1J.y + cury, PIX SRC, 1);

202

#ifdef DEBUG
printfC'Lcaving circle function\n");
#endif DEBUG

* #endif ACFGGRAPH

203

/* TITLE :spacewin.c
" AUTHORS :Vici Abel and Medio Monti
" DATE : 15 November 1990
" REVISED : 30 November 1990
" SYSTEM : NPS SUN TAURUS
* LANGUAGE : SunView and C
" COMPILER :Unix cc
" DESCRIPTION :This program creates the spacer frame and the subwindows
" associated with it.

1* SunView header files needed in this program. *
#include < suntool/sunview.h >
#include < suntool/panel.h >
#include < suntool/tty.h >
#include < suntool/icon.h >
#include < suntool/scrollbar.h >
#include < pixrect/pr line. h >
#include < stdio.h >
#include < math.h >

#deflne BASEFRAMEWINX 525
#define BASEFRAMEWINY 205
#define TTYWINHEIGLIT 794
#define TTYWINWIDTH 1000
#define PANELWINHEIGHT 100
#define PANELWINWIDTH 1000
#define PANELWINX 0
#define PANELXGAP 27

/* type declarations */
Frame base-frame;
Panel controlpanel;
Panel -item menu;
Panel-item input-string;

Tty tty sw;
Icon spacer icon;

1* Procedures used by buttons and menus *
static void call righto;
static void spacerproco;

204

/* This is the icon for the frame *
static short icon-imageD
include "spacer.icon"

mnprstatic(spacerjixrect, 64, 64, 1, icon image);

main(argc, argv)
int argc;
char *argvo;

spacer icon = icncet(CNIAE &spacerpixrect, 0);

1* this is the base frame for the application *1
base fr-ame = window-create(NULL, FRAME,

WIN_-X BASEFRAMEWINX, 1* sets x position *
WIN Y, BASEFRAMEWINY, 1* sets y position *
FRAMAELABEL, "Spacer Window l.0",I* frame label *
FRAME ICON, spacer con, 1* icon used *
FRAMEARGS, argc, argv, 1* main args *

0);

/* this is a tty subwindow *
tty sw = window create(base frame, TTY,

WIN-HEIGHT, TTYWINHEIGHT,
WIN-WIDTH, TTY WIN WIDTH,

0);

1* this is a panel subwindow *
controljpanel = window create(base -frame, PANEL,

WIN BELOW,9 tty Sw,
WIN HEIGHT, PANEL WINHEIGHT,
WINWIDTH, PANEL WIN WIDTH,
WINX, PANELWINX,
PANEL ITEMXGAP, PANELXGAP,

0);

window-fit(baseframe);

exit(0);

205

APPENDIX E

This appendix contains the source code for ugetangle.p". Italicized text indicates the
corresponding acfg node numbers.

program getangle (input,output);
const Pi = 3.1415926536;
var ang,XO,YO,XT,YT,W,L:real;

function Angle(XO,YO,XT,YT,WT,LT:real): real;
var SA,SB,SC,SD,AX,AY, BX,BY, CX,CY, DX,DY: real;
HalfWidth, Halffiength: real;

function Slope (X1,Y1,X2,Y2:real): real;
begin node 1

Slope := (Y2 - Yl) / (X2 - Xl); node 2
end;
begin node 4

HalfWidth:=WT/2; node 5
Halffength :LT /2; node 6
AX : =XT - HalfWidth; node 7
AY := YT + Halftiength; node 8
DX : =XT +HalfWidth; node 9
DY := YT - HalfLength; node 10
BX: DX; node))1
BY: AY; node 12
CX: AX; node 13
CY := DY; node 14
SA := Slope(XO,YO,AX,AY); nodes 15 & 16
SA :=arctan(SA); nodes17 & 18
SD =Slope(XO,YO,DX,DY); nodes 19 & 20
SD :=arctan(SD); nodes 21 &22
SC:= Slope(XO,YO,CX,CY); nodes 23 & 24
SC : = arctan(SC); nodes 25 & 26
SB := Slope(XO,YO,BX,BY); nodes 27 & 28
SB : = arctan(SB); nodes 29 & 30
if ((YO >BY) and (XO >BX)) then node 31

Angle= abs(SD - SA) nodes 32 &33
else if ((X < CX) and (YO < CY)) then node 34

Angle :=abs(SA - SD) nodes 35 &36
else if N(O > AY) and (XO < AX)) then node 37

Angle :=abs(SC - SB) nodes 38 &39
else if ((YO >DY) and (XO >DX)) then node 4o

206

Angle := abs(SB - SC) nodes 41 & 42
else if XO > BX then node 43

Angle := abs(SD + SB) nodes 44 & 45
else if XO < AX then node 46

Angle:= abs(SA + SC) nodes 47& 48
else if (YO > = AY) then node 49

if (XO = AX)then node SO
Angle : = Pi/2 - abs(SB) nodes 5 & 52

else if (XO < BX) then node 53
Angle : = Pi - abs(SA) - abs(SB) nodes 54, 55 & 56

else
Angle : = Pi/2 - abs(SA) nodes 57 & 58

else if (YO < = CY) then node 59
if (XO = DX) then node 6O

Angle := Pi/2 - abs(SC) nodes 61 & 62
else if (XO > CX) then node 63

Angle : = Pi - abs(SD) - abs(SC) nodes 64. 65 & 66
else

Angle : = Pi/2 - abs(SD) nodes 67 & 68
else

Angle:= 2 * Pi; node 69
end;

begin node 71
readln(XO,YO,XT,YT,W,L); node 72
an&: = Angle(XO,YO,XT,YT,W,L); nodes 73 & 74
wnteln('Observed angle is ',ang); node 75

end.

207

APPENDIX F

This appendix contains a copy of the file "reacher-out".

getangle
0
true
1
3
program getangle (input,output);
const Pi = 3. 1415926536;
var ang,XO,YO,XT,YT,W,L:real;
Angle
71
70
72
-1
true
false
0

7
72
71
73
-1
true
false
0

readln(XO,YQ,XT,YT,W,L)

2
73
72
74
-1
true

208

false

Angle
Angle(XQ,YO,XT,YT,W,L)

11
74
72
75
-1
true
false
0

ang: = Angle(XO,YO,XT,YT,W,L);

1
75
73

true
false
0

writeln('Observed angle is ',ang)

2
Angle
1
true
1
3
function Angle(XO, YO,XT, YT,WT,LT:real): real;
var SA 'IB,SC,SD,AX,AY, BX,BY, CX,CY, DX,DY:
HalfW.--i, Halffength: real;
Slope
4
13
5
-1I
true
false
0

209

7
5
14
6
_1
true
false
0

HalfWidth WT /2;

1
6
15
7
_1
true
false
0

Hal fLength LT /2;

1
7
16
8
-1
true
false
0

AX =XT - HalfWidth;

1
8
17
9
-1I
true
false
0

AY =YT + Halftength;

1
9
18

210

10
-1
true
false

* 0
DX XT + HalfWidth;

* 1
10
19
11
-1
true
false
0

DY YT - HalfLength;

1
11
20
12
-1
true
false
0

BX: DX;

1
12
21
13
-1
true
false
0

BY: AY;

1
13
22

* 14
-1
true

211

false
0

CX: AX;

1
14
23
15
-1
true
false
0

CY: DY;

1
15
24
16
-1
true
false
1
Slope
Slope(XO,YO,AX,AY)

11
16
24
17
-1
true
false

SA: Slope(XO,YO,AX,AY);

1
17
25
18
-1
true
false
0

212

arctan(SA)

11
18

* 25
19
-1

* true
false
0

SA arctan(SA);

1
19
26
20
-1
true
false
1
Slope
Slope(XO,YO,DX,DY)

11
20
26
21
-1
true
false
0

SD:= Slope(XO,YO,DX,DY);

1
21
27
22
-1
true
false
0
arctan(SD)

213

22
27
23

true
false
0

SD arctan(SD);

1
23
28
24
-1
true
false
1
Slope
Slope(XQ,YO,CX,CY)

11
24
28
25

true
false
0

SC:= Slope(XO,YO,CX,CY);

1
25
29
26
-1
true
false
0
arctan(SC)

11
26

214

29
27
-1
true
false
0

SC arctan(SC);

27
30
28
-1
true
false
1
Slope
Slope(XO,YO,BX,BY)

11
28
30
29
-1
true
false
0

SB Slope(XO,YO,BX,BY);

1
29
31
30
-1
true
false
0
arctan(SB)

11
30
31
31

215

-1
true
false
0

SB =arctan(SB);

1
31
32
32
34
((YO > BY) and (XO > BX))
not (((YO > BY) and (XO > BX)))

0
if ((YO > BY) and (XO > BX)) then

12
32
33
33
-1
true
false
0
abs(SD - SA)

11
33
34
-1
-1
true
false
0
Angle =abs(SD - SA)

1
34
35
35
37
((XO < CX) and (YO < CY))
not (((XO < CX) and (YO < CY)))

216

0
if ((XO < CX) and (YO < CY)) then

12
35
36
36
-1
true
false
0
abs(SA - SD)

11
36
37
-1
-1
true
false
0
Angle: abs(SA - SD)

37
38
38
40
((YO > AY) and (XO < AX))
not (((YO > AY) and (XO < AX)))

0
if ((YO > AY) and (XO < AX)) then

12
38
39
39
-1
true
false
0
abs(SC - SB)

217

39
40

true
false
0
Angle =abs(SC - SB)

1
40
41
41
43
((YO > DY) and (XQ > DX))
not (((YO > DY) and (XO > DX)))

0
if ((YO > DY) and (XO > DX)) then

12
41
42
42
-1
true
false
0
abs(SB - SC)

11
42
43
-1
-1
true
false
0
Angle =abs(SB - SC)

43
44

218

44
46
XO >BX
not (XO > BX)

0
if XO >BX then

12
44
45
45
-1
true
false
0
abs(SD + SB)

11
45
46
-1
-1
true
false
0
Angle =abs(SD + SB)

1
46
47
47
49
XO <AX
not (XO < AX)

0
if XO <AX then

12
47
48
48
-1
true

219

false
0
abs(SA + SC)

48
49

true
false
0
Angle:= abs(SA + SC)

49
50
50
59
(YO > = AY)
not ((YO > = AY))

0
if (YO > =AY) then

12
50
51
51
53
(XO = AX)
not ((XO = AX))

0
if (XO =AX) then

12
51
52
52
-1
true
false
0
abs(SB)

220

52
53

true
false
0
Angle =PiI2 - abs(SB)

53
54
54
57
(XO <BX)
not ((XQ < BX))

0
if (XO < BX) then

12
54
55
55
-1
true
false
0
abs(SA)

11
55
55
56
-1
true
false

abs(SB)

11
56
56

221

true
false
0
Angle =Pi - abs(SA) - abs(SB)

17
57

58
-11
true
false
0
abs(SA)

11
58
58

true
false
0
Angle =Pi/2 - abs(SA)

1
59
59
60
69
(YO < = CY)
not((YO < =CY))

0
if (YO < = CY) then

12
60
60
61
63
(XO = DX)

222

not ((XO = DX))
0
if (XO =DX) then

12
61
61
62
-1
true
false
0
abs(SC)

11
62
62
-1
-1
true
false
0
Angle =Pi/2 - abs(SC)

1
63
62
64
67
(XO >CX)
not ((XO > CX))

if (XO > CX) then

64
63
65
-1
true
false
0
abs(SD)

223

11
65
63
66

true
false
0
abs(SC)

11
66
64

true
false
0
Angle =Pi - abs(SD) - abs(SC)

1
67
65
68
-1
true
false
0
abs(SD)

11
68
66

true
false
0
Angle =Pi/2 - abs(SD)

69
67

224

true
false
0

Angle =2 Pi

Slope
4
true
0
1
function Slope (X1,Y1,X2,Y2:real): real;
1
10
2
-1
true
false
0

7
2

true
false

Slope (Y2 - Y1) /(X2 - XI);

225

APPENDIX G

This appendix contains a copy of the file "walker-out".

getangle
0
true
1
3
program getangle (input,output);
const Pi = 3.1415926536;
var ang,XO,YO,XT,YT,W,L:real;
Angle
72
70
74
_-1
true
false
0

readln(XO,YO,XT,YT,W,L)

2
74
72
75
-1
true
false
1
Angle

ang: = Angle(XO,YO,XT,YT,W,L);

1
75
73
-1
-1

226

true
false
0

writeln('Observed angle is ',ang)

2
Angle
1
true
1
3
function Angle(XO,YO,XT,YT,WT,LT:real):real;
var SA,SB,SC,SD,AX,AY, BX,BY, CX,CY, DX,DY:
HalfWidth, HalfLength: real;
Slope
5
13
6
-1
true
false
0

HalfWidth WT / 2;

1
6
15
7
-1
true
false
0

HalfLength "= LT /2;

1
7
16
8
-1
true
false
0

AX XT - HalfWidth;

227

1
8
17
9

true
false
0

AY =YT + Halff-ength;

1
9
18
10
-1
true
false
0

DX :=XT + HalfWidth;

1
10
19
11
-1
true
false
0

DY =YT - Halffength;

1
11
20
12
-1
true
false

BX: DX;

12
21

228

13
-1
true
false

* 0
BY: AY;

1
13
22
14
-1
true
false
0

CX: AX;

1
14
23
16
-1
true
false
0

CY: DY;

1
16
24
18
-1
true
false
1
Slope

SA:= Slope(XO,YQ,AX,AY);

1
18
25
20
-1

229

true
false
0

SA arctan(SA);

20
26
22
-1
true
false
1
Slope

SD: Slope(XO,YO,DX,DY);

1
22
27
24
-1
true
false
0

SD arctan(SD);

24
28
26
-1
true
false
1
Slope

SC Slope(XO,YO,CX,CY);

1
26
29
28
-1
true

230

false
0

SC arctan(SC);

1
28
30
30
-1
true
false
1
Slope

SB : Slope(XO,YO,BX,BY);

1
30
31
31
-1
true
false
0

SB arctan(SB);

1
31
32
33
34
((YO > BY) and (XO > BX))
not (((YO > BY) and (XO > BX)))and ((YO > BY) and (XO > BX))

0
if ((YO > BY) and (XO > BX)) then

12
33
33
999999
-1
((YO > BY)and (XO > BX))

false
0

2.'1

Angle =abs(SD - SA)

1
34
35
36
37
((XO <CX) and (YOQ<CY)) and ((XO <CX) and (YO <CY))
not (((XO < CX) and (YO < CY)))and not(((YO > BY) and (XO > BX)))

0
if ((XO < CX) and (YO < CY)) then

12
36
36
999999
-1
((XO < CX) and (YO < CY))
false
0
Angle =abs(SA - SD)

1
37
38
39
40
((YO > AY) and (XO < AX)) and ((YO > AY) and (XO < AX))
not (((YO > AY) and (XO < AX)))and ((YO > AY) and (XO < AX))

0
if ((YO > AY) and (XO < AX)) dien

12
39
39
999999
-1
((YO > AY) and (XQ < AX))
false
0
Angle =abs(SC - SB)

232

1
40
41
42
43
((YO >DY) and (XO >DX)) and ((YO >DY) and (XO >DX))
not (((YO > DY) and (XO > DX)))

0
if ((YO > DY) and (XO > DX)) then

12
42
42
999999
-1
((YO > DY) and (XO > DX))
false
0
Angle =abs(SB - SC)

1
43
44
45
46
XO>BX andXO>BXandYO>=DYandYO<=BYandYO>=DYand
YO <=BY
not (XO > BX) and cYO > =DY and YO <=BY and YO <=BY and YO >=

DY
0
if XO > BX then

12
45
45
999999
-1
XO > BX and YO >=DY and YO <=BY
false
0
Angle:= abs(SD + SB)

1

233

46
47
48
49
XO<AX andYO>=CYandYO<=AY
not(XO < AX)and XO < AX andYO >=CYandYO <=AY

0
if XO < AX then

12
48
48
999999
-1
XO < AX andYO >= CYandYO <= AY

false
0
Angle = abs(SA + SC)

1
49
50
50
59
(YO > = AY)
not ((YO > = AY))

0
if (YO > = AY) then

12
50
51
52
53
(XO =AX) and (YO >=AY)
not ((XO = AX)) and (YO > =AY)

0
if (XO = AX) then

12
52
52
999999

234

-1
(XO=AX) and (YO > =AY)

false
0
Angle =PiI2 - abs(SB)

1
53
54
56
58
(XO < BX) and (XO > AX) and (YO >=AY)
not ((XO < BX))and (XO > AX) and (YO > =AY)

0
if (XO <z BX) then

12
56
55
999999
-1
(XO < BX) and (XO > AX) and (YO >=AY)

false
0
Angle Pi - abs(SA) - abs(SB)

1
58
57
999999
-1
(XO =BX) and (YO > = AY)
false
0
Angle =Pi/2 - abs(SA)

1
59
59
60
69
(YO < = CY)
not ((YO < =CY))and (YO < AY) and (XO >=AX) and (XO <=BX)

235

0
if (YO <= CY) then

12
60
60
62
63
(XO =DX) dnd (YO <=CY)
not ((XO = DX)) and YO < = CY

0
if (XO =DX) then

12
62
61
999999
-1
(XO=DX) and (YO <=CY)

false
0
Angle =Pi/2 - abs(SC)

1
63
62
66
68
(XO > CX) and (YO < CY) and (XO < DX)
not ((XO > CX))and (YO <=CY) and (XO < DX)

0
if (XO > CX) then

12
66
63
999999
-1
(XO > CX) and (YO <=CY) and (XO <DX)

false
0
Angle =Pi - abs(SD) - abs(SC)

236

68
65
999999

not ((XO > CX))and (YO < CY) and (XO <DX)
false
0
Angle =P112 - abs(SD)

1
69
67
999999
-1
not (YO < =CY))and (YO < AY) and (XO >=AX) and (XO <=BX)

false
0

Angle =2 *Pi;

1
999999

* false
false
0

WALKER added exit node
10
Slope
4
true
0
1
function Slope (XI ,Yl,X2,Y2:real): real;
2
10
-1

true
false

237

0
Slope: (Y2 - Y1) I(X2 - Xl);

238

APPENDIXK H

This appendix contains a copy of the file "getangle. list.

program getangle (input,output);
const Pi = 3.1415926536;
var ang,XO,YO,XT,YT,W,L:real;

function Angle(XO,YO,XT,YT,WT,LT:real):real;
var SA,SB,SC,SD,AX,AY, BX,BY, CX,CY, DX,DY:
HalfWidth, HalfLength: real;

function Slope (X1,Y1 ,X2,Y2:real): real;

begin (Slope when true)
1:
2: Slope:= (Y2 - Y1)/(X2 -XI);
end (Slope)

begin (Angle when true)
4:
5: HalfWidth:=WTI2;
6: HalfLength:=LT/2;
7: AX : =XT- HalfWidth;
8: AY := YT +HalfLength;
9: DX : = XT + HalfWidth;
10: DY : =YT -HalfLength;
11: BX:= DX;
12: BY:= AY;
13: CX:= AX;
14: CY:= DY;
15: Slope(XO,YO,AX,AY)
16: SA := Slope(XO,YO,AX,AY);
17: arctan(SA)
18: SA := arctan(SA);
19: Slope(XO,YO,DX,DY)
20: SD := Slope(XO,YO,DX,DY);
21: arctan(SD)

239

22: SD =arctan(SD);

23: Slope(XO,YO,CX,CY)
24: SC := Slope(XO,YO,CX,CY);
25: arctan(SC)
26: SC := arctan(SC);
27: Slope(XO,YO,BX,BY)
28: SB:= Slope(XO,YO,BX,BY);
29: arctan(SB)
30: SB : =arctan(SB);
31: if ((YO > BY) and (XO > BX)) then
32: abs(SD - SA)
33: Angle :=abs(SD - SA)
else
34: if ((XO < CX) and (YO < CY)) then
35: abs(SA - SD)
36: Angle :=abs(SA - SD)
else
37: if ((YO > AY) and (XO < AX)) then
38: abs(SC - SB)
39: Angle =abs(SC - SB)
else
40: if ((YO > DY) and (XO > DX)) then
41: abs(SB - SC)
42: Angle := abs(SB - SC)
else
43: if XO > BX then
44: abs(SD + SB)
45: Angle :=abs(SD + SB)
else
46: if XO < AX then
47: abs(SA + SC)
48: Angle :=abs(SA + SC)
else
49: if (YO > = AY) then
50: if (XO =AX) then
5 1: abs(SB)
52: Angle :=Pi/2 - abs(SB)
else
53: if (XO < BX) then
54: abs(SA)
55: abs(SB)
56: Angle :=Pi - abs(SA) - abs(SB)
else

240

57: abs(SA)
58: Angle Pi/2 - abs(SA)
else
59: if (YO < = CY) then
60: if (XO=DX) then
61: abs(SC)
62: Angle =Pi/2 - abs(SC)
else
63: if (XO > CX) then
64: abs(SD)
65: abs(SC)
66: Angle :=Pi - abs(SD) - abs(SC)
else
67: abs(SD)
68: Angle :=Pi/2 - abs(SD)
else
69: Angle :=2 * Pi;
end (Angle)

begin {getangle when true)
71:
72: readln(XO,YO,XT,YT,W,L)
73: Angle(XO,YO,XT,YT,W,L)
74: ang: = Angle(XO,YO,XT,YT,W,L);
75: writeln('Observed angle is ',ang)
end {getangle}

241

APPENDIXK I

This appendix contains a copy of the file "spacer in.l".

(setq progname 'jetangle_)
(defun _etangle_ (&rest params)
(prog 0
(startup)
(setq routine-names (list 'getangle))
(setq arg list nil)
(setq tLarglist nil)
(setq t retval nil)
(neWvist 0)
(setq typelist (cons nil typelist))
(setq FAULTLIST nil)
(setq FAULT -LIST (append FAULT LIST '((0 line 42 "mis-substitution of SC for SD
in this assignment" Angle 1 13 (NE (varval varlist '(W)) 0) (uni,_AND (uni, AND (GT
(varval varlist '(YO)) (varval varlist '(DY))) (GT (varval varlist '(XO)) (varval varlist
'(DX)))) (uni AND (GT (varval varlist '(YO)) (varval varlist '(DY))) (GT (varval varlist
'(XO)) (varval varlist '(DX))))) (varval varlist '(Angle)) "Obs Cond 1")))
(setq Anglel. nil)
(cond (FAULTLIST (getfault FAULT-LIST)))
(patom "initialize debug options")
(terpr)
(setq linenum 1) (execi) (cond (swin (go -t switch)))
getangle
line_1 (exec 1) (cond (swln (go t switch)))

(setq entryasserts (cons '(t) entry asrt)
(setq exit-asserts (cons '(t) exit-asserts))
(addvar 'L 'real)
(addvar 'W 'real)
(addvar 'YT 'real)
(addvar 'XT 'real)
(addvar 'YO 'real)
(addvar 'XO 'real)
(addvar 'ang 'real)
(cond (in_verif mode (initialize-variables t))

(t (global init)))

242

(cond (static chain
(let ((next (car static-chain)))

(setq static-chain (cdr static camn))
(setq swin next)
(go t switch))))

(go getangle.m~ain)
Angle. static chain
(setq static chain '(Angle))
(go getangle)
Angle
(set upJproc 1)

;top of function Angle

(addvar 'LT 'real)
(addvar 'WT 'real)
(addvar 'YT 'real)
(addvar 'XT 'real)
(addvar 'YO 'real)
(addvar 'XO 'real)
(setargs) (setq arg list nil)
(addvar 'Angle 'real)
(cond ((not at top level) (changevar '(Angle) '@Angle)))
(addvar 'DY 'HalfWidth)
(addvar 'DX 'HalfWidth)
(addvar 'CY 'HalfWidth)
(addvar 'CX 'HalfWidth)
(addvar 'BY 'HalfWidth)
(addvar 'BX 'HalfWidth)
(addvar 'AY 'HalfWidth)
(addvar 'AX 'HalfWidth)
(addvar 'SD 'HalfWidth)
(addvar 'SC 'HaltWidth)
(addvar 'SB 'HalfWidth)
(addvar 'SA 'HalfWidth)
(addvar 'HalfLength 'real)
(cond ((not at top level) (save -iit -values)(do _entry assertion)

(initlocalparams) (go Angle.exit)))
(cond (in verif mode (initialize variables t)))
(cond (static chain

(let ((next (car static -chain)))
(setq static -chain (cdr static-chain))
(setq swln next)

243

(go -t-switch))))
(go Angle. main)
(setq entry asserts (cons '(t) entry asserts))
(setq exit asserts (cons '(t) exit-asserts))
Slope, static chain
(setq static-chain '(Angle Slope))
(go getangle)
Slope
(set upproc 2)

;top of function Slope

(addvar MY 'real)
(addvar 'X2 'real)
(addvar 'YI 'real)
(addvar 'X1 'real)
(setargs) (setq arg list nil)
(addvar 'Slope 'real)
(cond ((not at top level) (changevar '(Slope) '@Slope)))
(cond ((not at top level) (save init -values)(do _entry_assertion)

(initlocalparanis) (go Slope.exit)))
(cond (in-verif mode (initialize-variables t)))
(cond (,-tatic -chain

(let ((next (car static -chain)))
(setq static-chain (cdr static-chain))
(setq swln next)
(go -t -switch))))

(go Slope. main)
(setq entry asserts (cons '(t) entry asserts))
(setq exit -asserts (cons '(t) exit asserts))
Slope, main
(save -mit -values)
(do entry assertion)
(cond (swln (go -tswitcb)))
;begin
line - 0 (exec 10) (cond (swln (go t swtch)))
(changevar '(Slope) '(unil (urn- (varval varlist '(Y2)) (varval varlist '(Y 1))) (urn- (varval
varlist '(X2)) (varval varlist '(Xl)))))
(go Slope.exit)
;end
Slope.exit
(do -exit -assertion) (cond (swln (go -tswitch)))
(check-routine exit)(cond (swln (go -tswitch)))

244

(set ret val '(varval varlist '(Slope)))
(closeproc)
(setq swin (car temp))
(go -t switch)

Angle. main
(save init values)
(doe ntry assertion)
(cond (swln (go -tswitcb)))
;begin
line -13 (exec 13) (cond (swin (go tswitch)))
(changevar '(HalfWidth) '(unil (varval varlist '(Wi)) 2))
line -15 (exec 15) (cond (swin (go t switch)))
(changevar '(HalfLength) '(unil (varval varlist '(LTM) 2))
line -16 (exec 16) (cond (swin (go t switch)))
(changevar '(AX) '(urn- (varval vaRlist '(XT)) (varval varlist '(HalfWidth))))
line -17 (exec 17) (cond (swin (go t switch)))
(changevar '(AY) '(uni+ (varval varlist '(YT)) (varval varlist '(HafLength))))
line 18 (exec 18) (cond (swln (go t switch)))
(cha ngevar '(DX) '(uni+ (varvai varlst 'QXT) (varval varlist '(HalfWidth))))
line -19 (exec 19) (cond (swln (go t switch)))
(changevar '(DY) '(urn- (varval vaRist '(Y'I)) (varval varlist '(HalfLength))))
line -20 (exec 20) (cond (swln (go -tswitch)))
(changevar '(BX) '(varval varlist '(DX)))
line -21 (exec 21) (cond (swln (go tswitch)))
(changevar '(BY) '(varval varlist '(AY)))
line -22 (exec 22) (cond (swin (go t switch)))
(changevar '(CX) '(varval varlist'(X)
line -23 (exec 23) (cond (swln (go t switch)))
(changevar '(CY) '(varval varlist '(DY)))
line 24 (exec 24) (cond (swln (go t Switch)))
(cond (arg list (setqtarglist arg list) (setq argjist nil)))

(setq arg list (cons '(VAR REF XO) arg list))
(setq arg list (cons '(VAR REF YO) argjlist))
(setq arg list (cons '(VAR REIF AX) arg list))
(setq arg list (cons '(VAR REF AY) arg list))
(setq arg list (reverse arg list))
(setq routine names (cons 'Slope routine names))M
(setq proclist (cons 'f ret-O proclist))
(cond (in verif~mode (setq at top level nil)))
(go Slope) f ret 0
(cond t Larglist (setq arg list targlist) (setq targist nil))

245

(t (setq arg list nil)))
(changevar '(SA) '(getjetyal))
line 25 (exec 25) (cond (swin (go t switch)))
(cond (arg list (setq targlist arg list) (setq arg list nil)))

(setq argjist (cons '(VAREF SA) arg list))
(setq argjist (reverse argist))
(set ret val (uarctan. arg list))
(cond (t arglist (setq arg list targlist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(SA) '(get etyal))
line 26 (exec 26) (cond (swin (go t switch)))
(cond (argjist (setq tLarglist arg list) (setq arg list nil)))

(setq arg list (cons '(VARREF XO) arg list))
(setq arg list (cons '(VARREF YO) arg list))
(setq arg list (cons '(VARREF DX) arg list))
(setq arg list (cons '(VARREF DY) arg list))
(setq arg list (reverse arg Ist))
(setq routine -names (cons 'Slope routine_names))
(setq proclist (cons 'fret 1 proclist))
(cond (in yerif mode (setq at top level nil)))
(go Slope) fre_1
(cond (_t arglist (setq arg list targlist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(SD) '(get ret val))
line 27 (exec 27) (cond (swin (go t switch)))

(con (agjis (stq arglist j ist) (setq arg list nil)))

(setq arg list (cons '(VARREF SD) arg list))
(setq arg list (reverse arg list))
(set ret val (u arctan arg list))
(cond (t arglist (setq arg list targlist) (setq targist nil))

(t (setq arg list nil)))
(changevar '(SD) '(get ret val))
line 28 (exec 28) (cond (swIn (go t switch)))
(cond (argjist (setq targist arg list) (setq arg list nil)))

(setq arg list (cons '(VAR REF XO) arg list))
(setq arg list (cons '(VARREF YO) arglist))
(setq arg -list (cons '(VAR7REF CX) argjist))
(setq arg list (cons '(VAR REF CY) arg list))
(setq arg list (reverse arg list))

246

(setq routine names (cons 'Slope routine names))
(setq prodist (cons I'fet-2 prodist))
(cond (in verif mode (setq at top level nil)))
(go Slope) f ret_2
(cond (t arglist (setq arg list targlist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(SC) '(jet retval))
line 29 (exec 29) (cond (swln (go t switch)))
(cond (arg list (setq targlist arg list) (setq arg list nil)))

(setq arg list (cons '(VAR REF SC) arg list))
(setq arg list (reverse arg list))
(setjetyal (uarctan arg list))
(cond t Larglist (setq arg list targlist) (setq _targlist nil))

(t (setq arg list nil)))
(changevar '(SC) '(get ret Val))
line 30 (exec 30) (cond (swin (go t Switch)))
(cond (arg list (setq tagitag lit stqagls nil))

(setq ~Lagls arg lit cns'VAEF) a(st))rgis

(setq arg list (cons '(VARREF YO) argjlist))
(setq arg list (cons '(VAR -REF BX) arg list))

* (setq arg list (cons '(VAR REF BY) arg list))

(setq arg list (reverse arg lIt))
(setq routine-names (cons 'Slope routne-names))

* (setq proclist (cons If ret 3 proclist))
(cond (in verif mode (set-q at top level nil)))
(go Slope), f ret3
(cond (jt arg list (setq arg list targlist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(SB) '(get ret val))
line 31 (exec 31) (cond (swln (go t switch)))
(cond (arg list (setq targlist , rg list) (setq arg list nil)))

(setq arg list (cons '(VARREF SB) arg list))
(setq arg list (reverse arg list))
(set~ret~val (u,_arctan arg list))
(cond (_t arglist (setq arg list targlist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(SB) '(get ret val))
line -32 (exec 32) (cond (swln (go -t switch)))
;top of if

247

(cond ((not (predval (uniAND (GT (varval varlist '(YO)) (varval varlist '(BY))) (GT
(varval varlist '(XQ)) (varval varlist '(BX)))))) (go line 35))
(swIn (go t switch)))
line 33 (execZ 33) (cond (swin (go t switch)))
(cond (arg list (setq targlist arg list) (setq argist nil)))

(setq arg list (cons '(uni- (varval varlist '(SD)) (varval varlist '(SA))) arg list))
(setq arg list (reverse arg list))
(set ret val (u fabs arg list))
(cond t Larglist (setq arg l.,ist tLarglist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(Angle) '(get~ret~val))
line -1 (exec 1) (cond (swIn (go t switch)))
(go Angle.exit)
line -35 (exec 35) (cond (swin (go -t switch)))
;top of if
(cond ((not (predval (uni AND (LT (varval varlist '(XO)) (varval varlist '(CX))) (LT
(varval varlist '(YO)) (varval varlist '(CY)))))) (go linej38))
(swin (go -t -switch)))
line 36 (exec 36) (cond (swin (go -t switch)))
(cond (arg list (setq tLarglist arg list) (setq arg list nil)))

(setq arg list (cons '(uni- (varval varlist '(SA)) (varval varlist '(SD))) arg list))
(setq arg list (reverse arg list))
(set ret val (u_fabs arg list))
(cond (_t arglist (setq arg list targlist) (setq tLarglist nil))

(t (setq arg list nil)))
(changevar '(Angle) '(get ret, val))
(go line -1)
line_38 (exec 38) (cond (swln (go -t switch)))
;top of if
(cond ((not (predval (uni_-AND (GT (varval varlist '(YO)) (varval varlist '(AY))) (LT
(varval varlist '(XQ)) (varval varlist '(AX)))))) (go line 41))
(swln (go t switch)))
line 39 (exec 39) (cond (swln (go t switch)))
(cond (arg list (setq targlist arg list) (setq arg list nil)))

(setq arg list (cons '(uni- (varval varlist '(SC)) (varval varlist '(SB))) arg list))
(setq arg list (reverse arg list))
(set retval (u fabs arg list))
(cond (t arglist (setq arg list targlist) (setq tLarglist nil))

(t (setq argjlst nil)))
(changevar '(Angle) '(get-ret-val))

248

(go line -1)
line -41 (exec 41) (cond (swin (go -tswitch)))
;top of if
(cond ((not (predval (uni__AND (GT (varval varlist W(O)) (varval varlist '(DY))) (GT
(varval varlist '(XO)) (varval varlist '(DX)))))) (go line 44))
(swin (go t switch)))
line 42 (execZ 42) (cond (swin (go -tswitch)))
(cond (Angle 1

(setq pc (list 'uni and pc '(uni, AND (uni,_AND (GT (varval varlist '(YO)) (varval
varlist '(DY))) (GT (varval varlist '(XO)) (varval varlist '(DX)))) (uni AND (GT (varval
varlist '(YO)) (varval varlist '(DY))) (GT (varval varlist '(XO)) (varval varlist '(DX)))))))

(setq contamlist '((Angle (uni, and (NE (varval varlist '(W)) 0) (uni AND
(uni AND (GT (varval varlist '(YO)) (varval varlist '(DY))) (GT (varval varlist '(XO))
(varval varlist '(DX)))) (uni AND (GT (varval varlist '(YO)) (varval varlist '(DY))) (GT
(varval varlist '(XQ)) (varval varlist '(DX)))))))))))
(cond (arg list (setq tLarglist arg list) (setq arg list nil)))

(setq arg list (cons '(uni- (varval varlist '(SB)) (varval varlist '(SC))) arg list))
(setq arg list (reverse arg list))
(set~ret~vat (u fabs arg list))
(cond t Larglist (setq arg list targlist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(Angle) '(get ret val))
(go line 1)
line_-44 (exec 44) (cond (swin (go -tswtch)))
;top of if
(cond ((not (predval (GT (varval varlist '(XO)) (varval varlist '(BX))))) (go line 47))
(swln (go -t -switch)))
line 45 (exec 45) (cond (swln (go -tswitch)))
(cond (arg list (setq targlist arg-list) (setq arg list nil)))

(setq arg list (cons '(uni+ (varval varlist '(SD)) (varval varlist '(SB))) arg list))
(setq arg list (reverse arg list))
(set ret val (u fabs arg list))
(cond Ct arglist (setq arg list _targlist) (setq t arglist nil))

(t (setq arg list nil)))
(changevar '(Angle) '(get ret val))
(go line 1)
line -47 (exec 47) (cond (swln (go tswtch)))
;top of if
(cond ((not (predval (LT (varval varlist '(XO)) (varval varlist '(AX))))) (go line 50))
(swln (go _t Switch)))
line 48 (exec 48) (cond (swln (go -tswtch)))

249

(cond (arg list (setq _targlist arg list) (setq argjist nil)))

(setq arg list (cons '(uni+ (varval varlist '(SA)) (varval varlist '(SC)) arg list))
(setq arg list (reverse arg list))
(set~ret~val (u fabs arg list))
(cond (t arglist (setq arg list targlist) (setq tLarglist nil))

(t (setq arg list nil)))
(changevar '(Angle) '(get ret val))
(go line -1)
line -50 (exec 50) (cond (swin (go -tswitch)))
;top of if
(cond ((not (predval (GE (varval varlist. '(YO)) (varval varlist '(AY))))) (go 1ne-59))
(swln (go t switch)))
line -51 (exec 5 1) (cond (swln (go -tswitch)))
;top of if
(cond ((not (predval (uni EQ (varval varlist '(XO)) (varval varlist '(AX))))) (go line 54))
(swin (go -t -switch)))
line -52 (exec 52) (cond (swln (go -t -switch)))
(cond (arg list (setq tLarglist arg list) (setq arg list nil)))

(setq arg list (cons '(VAR REF SB) argjlist))
(setq arg list (reverse arg list))
(set ret Val (u fabs arg list))
(con'd (t arglist (setq arg list tLarglist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(Angle) '(uni- (unil 3.1415926536 2) (get ret val)))
(go line 1)
line -54 (exec 54) (cond (swln (go -tswitch)))
;top of if
(cond ((not (predval (LT (varval varlist '(XO)) (varval varlist '(BX))))) (go line 57))
(swln (go t swtch)))
line 55 (exec 55) (cond (swln (go t switch)))
(cond (arg list (setq tagis rg list) (setq arg list nil)))

(setq arg list (cons '(VAR REF SA) argjlist))
(setq arg list (reverse arg list))
(set retval (u fabs arg list))
(cond (t arglist (setq arg list targlist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(Angle) '(uni- 3.1415926536 (getjetvyal)))
(go line 1)
line 57 (exec 57) (cond (swin (go t switch)))
(cond (arg list (setq targlist arg -list) (setq arg list nil)))

250

(setq arg list (cons '(VAR REF SA) arg list))
(setq argjist (reverse arg list))
(set~ret~val (u ~fabs arg list))
(cond (t arglist (setq arg list tLarglist) (setq targlist nil))

(t (setq arg list nil)))
(changevar '(Angle) '(uni- (uni! 3.1415926536 2) (get ret Yal)))
(go line 1)
line -59 (exec 59) (cond (swln (go -tswitch)))
;top of if
(cond ((not (predval (LE (varval varlist '(YO)) (varval varlist '(CY))))) (go line_67))
(swin (go -tswtch)))
line 60 (exec 60) (cond (swln (go -tswitch)))
,topof if
(cond ((not (predval (uniEQ (varval varlist '(XO)) (varval varlist '(DX))))) (go line 62))
(swln (go _t switch)))
line 61 (exec 61) (cond (swin (go -tswitch)))
(cond (arg list (setq targlist arg-list) (setq arg list nil)))

(setq arg list (cons '(VAR REF SC) arg list))
(setq arg list (reverse arg list))
(set ret-val (u_fabs arg list))
(con-d (t arglist (setq arg list tLarglist) (setq tLarglist nil))

(t (setq arg list nil)))
(changevar '(Angle) '(uni- (unil 3.1415926536 2) (get ret al)))
(go line 1)
line -62 (exec 62) (cond (swin (go -tswitch)))
;top of if
(cond ((not (predval (GT (varval varlist '(XO)) (varval varlist '(CX))))) (go line 65))
(swln (go -t -switch)))
line -63 (exec 63) (cond (swln (go -t switch)))
(cond (arg list (setq targlist arg-list) (setq arg list nil)))

(setq arg list (cons '(VAR REF SD) arg list))
(setq arg list (reverse arg list))
(set ret val (u fabs arg list))
(con.d (t arglist (setq arg list targlist) (setq targlist nil))

(t (setq arg list. nil)))
(changevar '(Angle) '(uni- 3.1415926536 (get ret val)))
(go line 1)
line 65 (exec 65) (cond (swln (go t switch)))
(cond (arg list (setq tLarglist arg -list) (setq arg list nil)))

(setq arg list (cons '(VAR REF SD) argjlst))

251

(setq arg list (reverse arg ist))
(set ret val (ufabs arg_.ist))
(cond (_targlist (setq arglist _targlist) (setq _targlist nil))

(t (setq arglist nil)))
(changevar '(Angle) '(uni- (uni/ 3.1415926536 2) (get ret val)))
(go line 1)
line 67 (exec 67) (cond (swln (go t switch)))
(changevar '(Angle) '(uni* 2 3.1415926536))
(go line 1)
;end
Angle.exit
(doexit assertion) (cond (swln (go _t-switch)))
(checkroutine exit)(cond (swIn (go _tswitch)))
(set ret val '(varval varlist '(Angle)))
(closeproc)
(setq swln (car temp))
(go _t switch)

getangle.main
(saveinit values)
(do entryassertion)
(cond (swln (go _t-switch)))
;begin
line 70 (exec 70) (cond (swln (go t switch)))
(cond ((eq (tyipeek) NEWLINE) (readc)))
(unisexread '(XO))
(unisexread '(YO))
(unisexread '(XT))
(unisexread '(YT))
(unisexread '(W))
(unisex-read '(L))
(cond ((eq (tyipeek) NEWLINE) (readc)))
line _72 (exec 72) (cond (swln (go _tswitch)))
(cond (arg list (setq _targlist arglist) (setq arglist nil)))

(setq arglist (cons '(VAR REF XO) arglist))
(setq arg ist (cons '(VAR REF YO) arglist))
(setq arg list (cons '(VAR REF XT) argjlist))
(setq arg.list (cons '(VAR REF YT) argjlist))
(setq arg list (cons '(VARREF W) arglist))
(setq arg list (cons '(VAR REF L) arg list))
(setq argjlist (reverse arglist))
(setq routine-names (cons 'Angle routine-names))

252

(setq proclist (cons 'f ret 4 proclist))
(cond (in verifmode (setq at top level nil)))
(go Angle) fret_4
(cond (t arglist (setq arg list _targlist) (setq _targlist nil))

(t (setq arg list nil)))
(changevar '(ang) '(get ret val))
line 73 (exec 73) (cond (swln (go tswitch)))
(unisexwrite "Observed angle is")
(unisexwrite (varval varlist '(ang)))
(terpri)
(go getangle.exit)
;end
getangle.exit
(do exitassertion) (cond (swln (go _t switch)))
(exec 'end) (cond (swln (go _t-switch))

(t (return)))
toplevelreturn (toplevelrestore)(go _t switch)
t switch (setq _switch swln) (setq swln nil)

(cond ((or (equal -switch 'getangle) (equal _switch "getangle")) (go getangle))
((or (equal _switch 'toplevelreturn) (equal _switch "toplevelreturn")) (go toplevelreturn))
((or (equal _switch 'Angle) (equal _switch "Angle")) (go Angle))
((or (equal _switch 'Angle.staticchain) (equal -switch "Angle. static-chain")) (go
Angle.static_chain))
((or (equal _switch 'Slope) (equal _switch "Slope")) (go Slope))
((or (equal switch 'Slope.staticchain) (equal _switch "Slope.staticchain")) (go
Slope. staticchain))
((or (equal _switch 'Slope.main) (equal _switch "Slope.main")) (go Slope.main))
((or (equal _switch 'line 10) (equal switch "line 10")) (go line 10))
((or (equal _switch 'Slope.exit) (equal switch "Slope.exit")) (go Slope.exit))
((or (equal _switch 'Angle.main) (equal _switch "Angle.main")) (go Angle.main))
((or (equal _switch 'line 13) (equal -switch "line 13")) (go line 13))
((or (equal _switch 'line_15) (equal _switch "line_15")) (go line_15))
((or (equal _switch 'line_16) (equal -switch "line 16")) (go line 16))
((or (equal _switch 'line 17) (equal switch "line 17")) (go line 17))
((or (equal _switch 'line.18) (equal -switch "linel ")) (go line_18))
((or (equal _switch 'line 19) (equal -switch "line 19")) (go line 19))
((or (equal _switch 'line.20) (equal _switch "line 20")) (go line_20))
((or (equal _switch 'line 21) (equal _switch "line21")) (go line 21))
((or (equal _switch 'line.22) (equal switch "line_22")) (go line.22))
((or (equal _switch 'line.23) (equal -switch "line 23")) (go line 23))
((or (equal _switch 'line.24) (equal _switch "line.24")) (go line_24))
((or (equal _switch 'fLretO) (equal _switch "f ret 0")) (go fretO))
((or (equal -switch 'line.25) (equal -switch "line 25")) (go line 25))

253

((or (equal switch 'line_26) (equal -switch "line 26")) (go line_26))
((or (equal _switch 'f ret 1) (equal -switch "f ret 1")) (go fret_l))
((or (equal switch 'line_27) (equal -switch "line27")) (go line 27))
((or (equal switch 'line_28) (equal _switch "line_28")) (go line28))
((or (equal -switch 'f ret 2) (equal -switch "f ret 2")) (go freL2))
((or (equal switch 'line_29) (equal -switch "line-29")) (go line_29))
((or (equal switch 'line_30) (equal -switch "line-30")) (go line_30))
((or (equal _switch 'f ret_3) (equal -switch "f ret 3")) (go f.ret.3))
((or (equal _switch 'line_31) (equal _switch "line 31")) (go line_31))
((or (equal -switch 'line_32) (equal -switch "line32")) (go line 32))
((or (equal _switch 'line 33) (equal switch "line33")) (go line_33))
((or (equal _switch 'line I) (equal -switch "line1")) (go line 1))
((or (equal _switch 'line_35) (equal -switch "line-35")) (go line_35))
((or (equal -switch 'line 36) (equal _switch "line 36")) (go line_36))
((or (equal _switch 'line 38) (equal _switch "line38")) (go line-38))
((or (equal -switch 'line_39) (equal _switch "line39")) (go line_39))
((or (equal -switch 'line_41) (equal _switch "line 41")) (go line41))
((or (equal -switch 'line_42) (equal -switch "line_42")) (go line_42))
((or (equal -switch 'line_44) (equal _switch "line_44")) (go line-44))
((or (equal _switch 'line_45) (equal _switch "line_45")) (go line 45))
((or (equal -switch 'line 47) (equal _switch "line 47")) (go line47))
((or (equal -switch 'line-48) (equal _switch "line_48")) (go line_48))
((or (equal _switch 'line-50) (equal -switch "line_50")) (go line 50))
((or (equal -switch 'line_51) (equal -switch "line_51")) (go line-51))
((or (equal switch 'line 52) (equal -switch "line-52")) (go line 52))
((or (equal switch 'line-54) (equal -switch "line 54")) (go line_54))
((or (equal switch 'line 55) (equal _switch "line55")) (go line_55))
((or (equal -switch 'line_57) (equal -switch "line 57")) (go line_57))
((or (equal -switch 'line_59) (equal -switch "line_59")) (go line_59))
((or (equal _switch 'line_60) (equal _switch "line_60")) (go line_60))
((or (equal -switch 'line_61) (equal -switch "line_61")) (go line_61))
((or (equal -switch 'line 62) (equal switch "line-62")) (go line_62))
((or (equal -switch 'line 63) (equal _switch "line 63")) (go line_63))
((or (equal _switch 'line765) (equal _switch "line_65")) (go line_65))
((or (equal -switch 'line_67) (equal _switch "line_67")) (go line67))
((or (equal _switch 'Angle.exit) (equal switch "Angle.exit")) (go Angle.exit))
((or (equal _switch 'getangle. main) (equal switch "getangle. main*)) (go getangle. main))
((or (equal -switch 'line_70) (equal -switch "line70")) (go line_70))
((or (equal switch 'line_72) (equal -switch "line-72")) (go line.72))
((or (equal _switch 'f ret_4) (equal -switch "fIret_4")) (go fLret_4))
((or (equal -switch 'line_73) (equal -switch "line73")) (go line_73))
((or (equal -switch 'getangle.exit) (equal -switch "getangle.exit")) (go getangle.exit))
(t (print "can't find target for goto")

254

(print -tswitch)
(terpri)))

(setq all routines (list 'getangle 'Angle 'Slope))
(setq NO REALS nil)

255

LIST OF REFERENCES

Adrion, R. W., Branstad, M. A., and Cherniavsky, J. C., *Validation, Verification, and
Testing of Computer Software," ACM Computing Surveys, June 1982, pp. 159-192.

Beizer, B., Software Testing Techniques, Van Nostrand Reinhold, 1983.

Beizer, B., Software System Testing and Quality Assurance, Van Nostrand Reinhold,
1984.

Beer, S., and others, A Sun User's Guide, MacMillan Education Ltd, 1989.

Bolchoz, J. M., The Identification of Software Failure Regions, Master's Thesis, Naval
Postgraduate School, Monterey, CA, June 1990.

Brooke, J.B. and Duncan, K.D., "Experimental Studies of Flowchart Use at Different
Stages of Program Debugging" (Ergonomics, Vol 23, No 11, 1980, pages 1057 - 1091),
Human Factors in Software Development, IEEE Computer Society Press, 1981, pp. 328-
357.

Brown, J. R. and Cunningham, S., Programming the User Interface: Principles and
Examples, John Wiley and Sons, 1989.

Curtis, B. (editor), Human Factors in Software Development, IEEE Computer Society
Press, 1981.

Fischer, G., "Human-Computer Interaction Software: Lessons Learned, Challenges
Ahead," IEEE Software, January 1989, pp. 44-52.

Fisher, A. S., CASE Using Software Development Tools, John Wiley & Sons, Inc., 1988.

Fitter, M. and Green, T.R.G., "When Do Diagrams Make Good Computer Languages?"
(International Journal of Man-Machine Studies, Vol 11, 1979, pages 235 - 261), Human
Factors in Software Development, IEEE Computer Society Press, 1981, pp. 358-379.

Frankl, P., ASSET Reference Manual, New York University, 1987.

256

Green, T.R.G., Sims, M.E., and Fitter, M.J., "The Problems the Programmer Faces"
(Ergonomics, Vol 23, No 9, 1980, pages 893 - 907), Human Factors in Software
Development, IEEE Computer Society Press, 1981, pp. 125-137.

Lewis, T. G. and Oman, P. W., "The Challenge of Software Development," IEEE

Software, November 1990, pp. 9-12.

Lutz, M., "Testing Tools," IEEE Software, May 1990, pp. 53-57.

Ramamoorthy, C.V., and Ho, S.F., 'Testing Large Software With Automated Software
Evaluation Systems," IEEE Transactions on Software Engineering, Vol. SE-1, No. 1,
March 1975, pp. 46-58.

Schneiderman, B., Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison-Wesley Publishing Company, 1987.

Shimeall, T., "FALTER - A Fault Annotation Tool," Technical Report NPS52-89-051,
Naval Postgraduate School, Monterey, CA, September 1989.

Shimeall, T., "REACHER - A Reachability Condition Derivation Tool," Technical
Report -4PS52-89-050, Naval Postgraduate School, Monterey, CA, September 1989.

Shimeall, T., "VIEWER - A User Interface for Failure Region Analysis," Naval
Postgraduate School, Monterey, CA, 27 September 1989.

SunView 1 Programmer's Guide, Sun Microsystems, Inc., Revision A of 9 May 1988.

257

BIBLIOGRAPHY

Adrion, R. W., Branstad, M. A., and Cherniavsky, J. C., 'Validation, Verification, and
Testing of Computer Software,* ACM Computing Surveys, June 1982, pp. 159-192.

Beer, S., and others, A Sun User's Guide, MacMillan Education Ltd, 1989.

Beizer, B., Software Testing Techniques, Van Nostrand Reinhold, 1983.

Beizer, B., Software System Testing and Quality Assurance, Van Nostrand Reinhold,
1984.

Bolchoz, J.M. The Identification of Software Failure Regions, Master's Thesis, Naval
Postgraduate School, Monterey, CA, June 1990.

Brooke, J.B. and Duncan, K.D., "Experimental Studies of Flowchart Use at Different
Stages of Program Debugging', (Ergonomics, Vol 23, No 11, 1980, pages 1057 - 1091),
Human Factors in Software Development, IEEE Computer Society Press, 1981, pp. 328-
357.

Brown, J. R. and Cunningham, S., Programming the User Interface: Principles and
Examples, John Wiley and Sons, 1989.

Curtis, B. (editor), Human Factors in Software Development, IEEE Computer Society
Press, 1981.

DeMillo, R.A., Guindi, D.S., McCracken, W.M., Offutt, A.J., and King, K.N., "An
Extended Overview of the Mothra Software Testing Environment," Proceedings Second
Workshop on Software Testing, Verification, and Analysis, July 1988.

Fischer, G., "Human-Computer Interaction Software: Lessons Learned, Challenges

Ahead," IEEE Software, January 1989, pp. 44-52.

Fisher, A. S., CASE Using Software Development Tools, John Wiley & Sons, Inc., 1988.

Fitter, M. and Green, T.R.G., "When Do Diagrams Make Good Computer Languages?"
(International Journal of Man-Machine Studies, Vol 11, 1979, pages 235 - 261), Human
Factors in Software Development, IEEE Computer Society Piess, 1981, pp. 358-379.

258

Frankl, P., ASSET Reference Manual, New York University, 1987.

Green, T.R.G., Sims, M.E., and Fitter, M.J., "The Problems the Programmer Faces"
(Ergonomics, Vol 23, No 9, 1980, pages 893 - 907), Human Factors in Software
Development, IEEE Computer Society Press, 1981, pp. 125-137.

Heller, M., "Graphical User Interfaces. Hype No Longer," Computer Shopper,
September 1990, pp. 121-158.

King, J. C., NA New Approach to Program Testing," Proceedings of the International
Conference on Reliable Software, Vol.10, No.6. 1975, pp. 228-233.

Lutz, M., "Testing Tools," IEEE Software, May 1990, pp. 53-57.

Ramamoorthy, C.V., and Ho, S.F., "Testing Large Software With Automated Software
Evaluation Systems," IEEE Transactions on Software Engineering, Vol. SE-1, No. 1,
March 1975, pp. 46-58.

Schneiderman, B., Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison-Wesley Publishing Company, 1987.

Shimeall, T., "FALTER - A Fault Annotation Tool," Technical Report NPS52-89-051,
Naval Postgraduate School, Monterey, CA, September 1989.

Shimeall, T., "REACHER - A Reachability Condition Derivation Tool," Technical
Report NPS52-89-050, Naval Postgraduate School, Monterey, CA, September 1989.

Shimeall, T., "VIEWER - A User Interface for Failure Region Analysis," Naval
Postgraduate School, Monterey, CA, 27 September 1989.

SunView 1 Programmer's Guide, Sun Microsystems, Inc., Revision A of 9 May 1988.

259

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. LCDR Vicki Sue Abel 2
c/o W. M. Abel, Jr.
509 Hartwood Road
Hartwood, VA 22405-4104

4. CAPT Medio Monti 2
178 Baker Drive
Pittsburgh, PA 15237

5. Timothy Shimeall 3
Naval Postgraduate School
Code CS/Sm, Department of Computer Science
Monterey, CA 93943-5100

6. LCDR Rachel Griffin 1
Naval Postgraduate School
Code CS/Gr, Department of Computer Science
Monterey, CA 93943-5100

7. Robert B. McGhee 1
Chairman, Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

8. CDR Thomas J. Hoskins 1
Code 37, Curricular Officer,
Computer Technology Curriculum
Naval Postgraduate School
Monterey, CA 93943-5100

260

9. Commandant of the Marine Corps
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

261

